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a b s t r a c t

Photogrammetric techniques have been used for measuring the important physical quantities in both

ground and flight testing including aeroelastic deformation, attitude, position, shape and dynamics of

objects such as wind tunnel models, flight vehicles, rotating blades and large space structures. The

distinct advantage of photogrammetric measurement is that it is a non-contact, global measurement

technique. Although the general principles of photogrammetry are well known particularly in

topographic and aerial survey, photogrammetric techniques require special adaptation for aerospace

applications. This review provides a comprehensive and systematic summary of photogrammetric

techniques for aerospace applications based on diverse sources. It is useful mainly for aerospace

engineers who want to use photogrammetric techniques, but it also gives a general introduction for

photogrammetrists and computer vision scientists to new applications.

& 2012 Elsevier Ltd. All rights reserved.
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1. Introduction

Photogrammetry is the science of determining the geometrical
(or metric) information (position, size and shape) of objects by
analyzing images recorded on films or electronic media. The
fundamental problem of photogrammetry is to establish the
geometrical relationship between the image plane and the
three-dimensional (3D) object space at the time of the imaging
event. Once this relationship is correctly established, the relevant
geometrical information and derived physical quantities about
the object can be obtained from its imagery. Photogrammetric
methods are particularly useful when the object to be measured is
inaccessible or difficult to access, when the object moves and
deforms, and when its contour and surface information is
required. The earliest roots of photogrammetry can be traced to
the Renaissance painters who studied the principles involved via
geometrical analysis in the late 1400s. The next significant
development was projective geometry that constitutes the math-
ematical basis of photogrammetry. Interestingly, the advent
of the modern aviation after the first power-flight of the
Wright brothers in the early 1900s promoted the great expans-
ion of aerial photogrammetry for topographic mapping from
photographs taken by cameras installed in a level-flying aircraft.
Therefore, as a result of the intensive research focused on this
field, the developed methodology, instrument and terminology of
photogrammetry are largely influenced by aerial photogramme-
try [46,80,102,109].

With the rapid advance of the technology of electro-optical
and video cameras and computers in the 1990s, the analytical
photogrammetric techniques based on models of cameras have
allowed the use of non-metric cameras and the various applica-
tions of close-range photogrammetry (or non-topographic photo-
grammetry) like industry inspection, medical imagery, and
architectural documentation. On the other hand, computer scien-
tists have dealt with the perspective projection problem in
computer vision or machine vision related to artificial intelligence
while they tend to adopt different formulations and more versa-
tile mathematical methods in perspective geometry, differential
geometry and image algebra [81,41,34]. Due to the replacement
of films by electronic image sensors, expressions other than
photogrammetry have been used to denote this extraction of
spatial information from images. Part of the impetus for these
name-changes is to emphasize the modern nature of these
efforts and to emphasize that digital images, rather than film,
make up the raw data. These various names, which are largely a
matter of personal choice of researchers of a special application,
include digital photogrammetry, geomatics, videogrammetry,
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videometrics, and computer vision. Here the generic term ‘photo-
grammetry’ is adopted, and sometimes interchangeably used with
some of the other terms.

Photogrammetric techniques have been found to be very
useful as a remote and non-contact measurement method for
specialized aerospace applications including wind tunnel testing,
aircraft flight testing, and ground-based and flight testing of large
space structures [19,22,99,25,67,83–85]. Although aeronautics
has promoted modern topographic photogrammetry, the photo-
grammetric applications in aerospace sciences discussed in this
review are basically non-topographic. The applications of the
specialized photogrammetric techniques are usually constrained
under some unique environments like vacuum chambers, high-
pressure and cryogenic wind tunnel test sections and generally all
with limited optical access. A typical photogrammetric system for
such measurements includes cameras (video and scientific CCD
cameras) and a computer for data reduction. Digital images are
usually acquired and reduced with automated image processing
in nearly real time, often on the same computer and often with
many images in a sequence or set of sequences. Some of the
specialized aerospace applications include aeroelastic wing defor-
mation, wind tunnel model attitude/position, sting bending,
model injection rates at blow-down wind tunnels, surface defor-
mation of micro-air-vehicles, full-scale drop model trajectory and
impact dynamics, and structural deformation of ultralight and
inflatable large space structures.

A whole class of quantitative image-based flow diagnostic and
visualization techniques in aerodynamics and fluid mechanics
either use some form of photogrammetry or could benefit from its
use. These image-based flow diagnostic techniques include pres-
sure and temperature sensitive paints (PSP and TSP), Doppler
global velocimetry (DGV), particle image velocimetry (PIV), par-
ticle tracking velocimetry (PTV), projection moiré interferometry
(PMI), planar laser induced fluorescence (PLIF), laser-induced
thermal acoustics (LITA), and oil-film interferometry for skin
friction measurements. In fact, the geometrical relationship
between the 3D object space and image plane is of fundamental
importance for all the image-based techniques. For surface
measurement techniques, photogrammetry provides the unique
point correspondence between a surface and image when the
equation of the surface is given, and therefore data extracted from
images can be mapped onto a surface grid in the object space. The
mapping procedure in PSP and TSP uses simpler resection
methods that determine the camera exterior orientation para-
meters under an assumption that the interior orientation and lens
distortion parameters are known [37,8,63,32]. Naughton and Liu
[82] use photogrammetry to address both model curvature and
camera perspective problems in oil-film interferometry for skin
friction measurements, not only simplifying the requirements for
measuring the geometric placements of the optical components,
but also improving the measurement accuracy. Particle tracking
velocimetry is based on photogrammetric intersection from
multiple cameras to determine the position of each particle at
two instants and further calculate its velocity [39]. Stereoscopic
and tomographic particle image velocimetry uses either some
special form of perspective projection transformation or certain
empirical models to establish the relationship between the
measurement domain and images [2].

Photogrammetry has proven to be a valuable tool in measure-
ments of the surface profile and dynamical behavior of gossamer
structure (ultra-low-mass space structure) both in ground and in-
flight tests as an integral part of the design process [83–85,56,57].
Precise photogrammetric measurement of large structures sup-
porting space technologies is well established. In particular, over
the last few decades, measurements of large solar arrays and
other structures have been conducted on various occasions as
part of a flight experiments on the Space Shuttle [49]. A critical
aspect of high-precision photogrammetry is the use of circular
targets on the object under study although photogrammetric
measurements can be performed using any discernible feature.
Analysis of images of the object is performed to precisely
determine the center of the targets, from which intersection can
be performed to find the three-dimensional location of that target
on the original object. This type of measurement performed on
multiple targets can reveal the overall shape of the structure.
Current practices for photogrammetric measurements of gossa-
mer structures use attached retro-reflective targets, attached
white diffuse targets, and white-light projected targets. A new
projected-target-generating method based on laser-induced
fluorescence has been developed [38], and it offers a
distinct advantage over other target-generating methods since
hundreds or thousands of targets are typically needed for surface
measurements.

Following this introduction, in Section 2, the perspective
projection transformation and models for cameras and lenses
are discussed. In Section 3, the camera calibration/orientation
methods are reviewed, which are key procedures in photogram-
metric measurements. Although there are various camera cali-
bration methods in photogrammetry and computer vision, the
Direct Linear Transformation (DLT) and a closed-form resection
solution are useful for initial estimation of the camera exterior
orientation parameters. Then, an optimization method for full
camera calibration/orientation from a single image of a three-
dimensional target field is described in comparison with labora-
tory calibrations, which is particularly suitable for wind tunnel
testing. Photogrammetric intersection is also discussed. The
components of typical photogrammetric systems, including
cameras, targeting, and software, are discussed in Section 4. The
content in Section 5 focuses on photogrammetric measurements
of wing deformation and model attitude in wind tunnels. Typical
photogrammetric systems and their applications in large wind
tunnels are described. Photogrammetric measurement uncertainty is
discussed in Section 6. Special topics in Section 7 are smart wing
deformation, in-flight aeroelastic deformation, determining loads
from deformation, and dynamic aeroelastic deformation. A short
account is given in Section 8 to discuss the role of photogrammetry
in quantitative global flow diagnostic techniques like image-based
velocimetry, pressure and temperature sensitive paints, and oil-film
interferometry. Photogrammetric methods applied to vision-based
autonomous aircraft landing are presented in Section 9. Photogram-
metric measurements for gossamer space structures are described in
Section 10, including measurement requirements and applications.
The appendices provide some mathematical details on relevant
technical aspects.
2. Perspective projection transformation and camera
modeling

2.1. Collinearity equations

Photogrammetric measurements extract metric data in the
three-dimensional (3D) object space from two-dimensional (2D)
images. The collinearity equations provide the perspective
projection relationship between the 3D coordinates in the
object space and corresponding 2D coordinates in the image
plane [110,77,80,67]. Camera calibration/orientation is required
for quantitative image-based measurements to determine the
camera interior and exterior orientation parameters, as well as
the lens distortion parameters which supplement the collinearity
equations. Fig. 2.1 illustrates the perspective projection relation-
ship between the 3D coordinates (X,Y,Z) in the object space and
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the corresponding 2D coordinates (x, y) in the image plane. The
lens of a camera is modeled by a single point known as the
perspective center denoted by (Xc, Yc,Zc) in the object space.
Likewise, the orientation of the camera is characterized by three
Euler orientation angles. The orientation angles and location of
the perspective center are referred to in photogrammetry as the
exterior orientation parameters. On the other hand, the relation-
ship between the perspective center and the image coordinate
system is defined by the camera interior orientation parameters,
namely, the camera principal distance c and the photogrammetric
principal-point location (xp,yp). The principal distance, which
equals the camera focal length for a camera focused at infinity,
is the perpendicular distance from the perspective center to the
image plane, whereas the photogrammetric principal-point is
where a perpendicular line from the perspective center intersects
the image plane. Due to lens distortion, however, perturbation to
the imaging process leads to departure from collinearity that can
be represented by the shifts dx and dy of the image point from its
‘ideal’ position on the image plane.

The image and object-space coordinate systems are related
through sequential rotational transformations, that is,

x�xp�dx

y�yp�dy

�c

0
B@

1
CA¼ lMðkÞMðfÞMðoÞ

X�Xc

Y�Yc

Z�Zc

0
B@

1
CA, ð2:1Þ

where the rotation matrices are defined as

MðoÞ ¼
1 0 0

0 coso sino
0 �sino coso

0
B@

1
CA, MðfÞ ¼

cosf 0 �sinf
0 1 0

sinf 0 cosf

0
B@

1
CA,

MðkÞ ¼
cosk sink 0

�sink cosk 0

0 0 1

0
B@

1
CA ð2:2Þ

The first rotation M(o) is around the object-space coordinate X

axis and the rotational vector is aligned with the X axis. The
second rotation M(f) is around a new object-space coordinate Y

axis (after the first rotation) and the rotational vector is opposite
to the Y axis. The third rotation M(k) is around a new Z axis (after
the first and second rotations) and the rotational vector is aligned
with the Z axis.
Fig. 2.1. Perspective projection from the 3D object space to the image plane.
Eliminating the scaling factor l from Eq. (2.1) leads to the
collinearity equations

x�xp�dx¼�c
m11ðX�XcÞþm12ðY�YcÞþm13ðZ�ZcÞ

m31ðX�XcÞþm32ðY�YcÞþm33ðZ�ZcÞ

y�yp�dy¼�c
m21ðX�XcÞþm22ðY�YcÞþm23ðZ�ZcÞ

m31ðX�XcÞþm32ðY�YcÞþm33ðZ�ZcÞ
, ð2:3Þ

where mij (i, j¼1, 2, 3) are the elements of the rotation matrix
M¼M(k)M(f)M(o)¼[mij] that are functions of the Euler orienta-
tion angles (o,f,k),

m11 ¼ cosf cosk, m12 ¼ sino sinf coskþcoso sink,

m13 ¼� coso sinf coskþsino sink, m21 ¼�cosf sink,

m22 ¼� sino sinf sinkþcoso cosk,

m23 ¼ coso sinf sinkþsino cosk,

m31 ¼ sinf, m32 ¼�sino cosf, m33 ¼ coso cosf: ð2:4Þ

The orientation angles (o,f,k) are approximately the pitch,
yaw, and roll angles of a camera in an established coordinate
system. The image coordinate shifts dx and dy can be modeled by
a sum of the radial and decentering distortions [45,47]

dx¼ dxrþdxd and dy¼ dyrþdyd, ð2:5Þ

where

dxr ¼ K1ðx
0�xpÞr

2þK2ðx
0�xpÞr

4

dyr ¼ K1ðy
0�ypÞr

2þK2ðy
0�ypÞr

4,

dxd ¼ P1½r
2þ2ðx0�xpÞ

2
�þ2P2ðx

0�xpÞðy
0�ypÞ, ð2:6Þ

dyd ¼ P2 ½r
2þ2ðy0�ypÞ

2
�þ2P1ðx

0�xpÞðy
0�ypÞ,

r2 ¼ ðx0�xpÞ
2
þðy0�ypÞ

2:

Here, K1 and K2 are the radial distortion parameters, P1 and P2 are
the decentering distortion parameters, and x0 and y0 are the
undistorted coordinates in the image plane.

Eq. (2.6) uses the photogrammetric principle point (xp,yp) as
reference. The proper reference point to use is discussed in
Section 2.4.1 if the lens optical axis is not perpendicular to the
image plane. The 3rd-order radial distortion, which is the domi-
nant term, can be either barrel (K1o0) or pincushion (K140)
distortion as illustrated in Fig. 2.2. It is important to verify the
sign convention for the distortion terms as sometimes the
opposite sign convention to that presented here is used. For
barrel distortion the image is displaced toward the point of
symmetry, whereas for pincushion distortion the image is dis-
placed away from the point of symmetry. Typical displacement
vectors generated by lens distortion are shown in Fig. 2.3. Note
that the 5th-order radial distortion K2 term may have significant
relative error after calibration due to its relatively small effect
except for large image formats. The units of the radial distortion
are m�2 and m�4 for the 3rd and 5th order distortions, respec-
tively. When lens distortion is small, the unknown undistorted
coordinates can be approximated by the known distorted
Fig. 2.2. Pincushion and barrel distortion of a square image.



Fig. 2.3. Displacement vectors due to lens distortion, (a) barrel distortion (K1o0),

and (b) pincushion distortion (K140). The solid rectangles in red represent the

undistorted image plane coordinates.

Fig. 2.4. Relationship between the vectors mi and Wj.
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coordinates, i.e., x0Ex and y0Ey. For large lens distortion, an
iterative procedure can be employed to determine the appro-
priate undistorted coordinates to improve the accuracy of estima-
tion. The following iterative relations can be used: (x0)0

¼x and
(y0)0
¼y, (x0)kþ1

¼xþdx[(x0)k,(y0)k] and (y0)kþ1
¼yþdy[(x0)k,(y0)k],

where the superscripted iteration index is k¼0,1,2y. The colli-
nearity equations, Eq. (2.3), contain a set of the camera para-
meters to be determined by camera calibration; the parameter
sets (o,f,k,Xc,Yc,Zc), (c,xp,yp), and (K1,K2,P1,P2) in Eq. (2.3) are the
exterior orientation, interior orientation, and lens distortion
parameters of a camera, respectively. The task of analytical
camera calibration is to obtain the camera exterior, interior, and
distortion parameters by solving the supplemented (with distor-
tion) collinearity equations.

Note that the Euler angles o, f and k have identical rotation
matrices as the angles o�p, p�f and k�p [101]. These two sets
of the angles are simply alternate ways to arrive at the final
correct orientation of a camera. Either angle set is equally valid
even though the values for the three angles can appear quite
different. This fact represents the duality of the rotation matrix.
Thus, a transformation between the two equivalent sets of the
rotation angles is given by o0 ¼o7p, f0 ¼7p�f, and k0 ¼k7p.
After the substitution of these angles into Eq. (2.4), the nine
elements of the rotation matrix remain unchanged. It is desirable
to compute the duality set of the angles and to restrict the angles
to [�p,p] in the (o, f, k) system. Note that the duality of the
rotation matrix is not simply due to the cyclical nature of the
trigonometric functions with additions of 72p.

2.2. Alternative forms of collinearity equations

In some cases, the vector and index notations are more
convenient for conciseness of expression [69]. In this section,
the 3D object space coordinates (X,Y,Z) and the 2D image
coordinates ( x,y) are replaced by X¼(X1,X2,X3)T and x¼(x1,x2)T,
respectively. The perspective projection transformation can be
expressed in a vector form, i.e.,

x1�x1
p�dx1

�c
¼

m1�ðX�XcÞ

m3�ðX�XcÞ
¼

X
1

X
3

x2�x2
p�dx2

�c
¼

m2�ðX�XcÞ

m3�ðX�XcÞ
¼

X
2

X
3

, ð2:7Þ

where the perspective center (or optical center) and the principal-
point location in the image plane are given by Xc ¼ ðX

1
c ,X2

c ,X3
c Þ

T

and xp ¼ ðx1
p ,x2

pÞ
T , respectively. The vectors m1¼(m11, m12, m13)T

and m2¼(m21, m22, m23)T are the directional cosine vectors paral-
lel to the x1-axis, x2-axis in the image plane, respectively. The
vector m3¼(m31, m32, m33)T is normal to the image plane, with a
direction from the principal point to the optical center along the
optical axis. As shown in Fig. 2.1, the unit orthogonal vectors m1,
m2, and m3 (midmj¼dij) constitute a local object space coordinate
frame at the optical center Xc. The coordinates X ¼ ðX

1
,X

2
,X

3
Þ
T are

the projections of the object space position vector X�Xc in the
(m1, m2, m3) frame. The scaling factor l¼�c=m3�ðX�XcÞ is a ratio
between the principal distance and the projected component of
the object space position vector X�Xc on the optical axis along
�m3 direction. When a point X is on the focal plane
m3d(X�Xc)¼0, the scaling factor becomes infinite (l¼N), which
corresponds to the points at infinity on the image plane.

In addition, Eq. (2.7) can be re-written in the homogenous
image coordinates xh¼(x1,x2,1)T, i.e.,

xh ¼ lPðX�XcÞ, ð2:8Þ

where the matrix P¼[pij]¼A�1M describes the relationship
between xh and X�Xc, and A¼[aij], defined as

A¼

1 0 �x1
p�dx1

0 1 �x2
p�dx2

0 0 �c

0
B@

1
CA, ð2:9Þ

is related to the interior orientation parameters. A tensor form of
Eq. (2.8) is aijx

j
h ¼ lmijðX

j
�Xj

cÞ. Here, the Einstein convention for
summation is used, and the tensor-form of the collinearity
equations is sometimes convenient for mathematical manipula-
tion. Another alternative form of the collinearity equations in the
homogenous coordinates is xh¼lPhXh, where Xh¼(X1, X2, X3,1)T

is the homogenous object space coordinates, and Ph¼A�1Mh

(3�4) is an extended matrix of P, and Mh¼(M�MXc) is the
extended rotational matrix (3�4). Note that Eq. (2.8) is non-
linear due to the distortion terms and the scaling factor which
varies throughout the field.

Furthermore, Eq. (2.7) can be re-written as a form suitable to
least-squares estimation for the object space coordinates X

W1�ðX�XcÞ ¼ 0 and W2�ðX�XcÞ ¼ 0, ð2:10Þ

where W1 and W2 are defined as W1 ¼ ðx
1�x1

p�dx1Þm3þcm1 and
W2 ¼ ðx

2�x2
p�dx2Þm3þcm2. As shown in Fig. 2.4, the vector W1 is

on the plane spanned by the orthogonal unit vectors m1 and m3,
while W2 is on a plane spanned by m2 and m3. Geometrically,
Eq. (2.10) describes two planes normal to W1 and W2, defining an
intersection line of the two planes through the optical center Xc. For a
given image point x¼(x1, x2)T, Eq. (2.10) is not sufficient to determine
the object space point with the three unknown coordinates X¼(X1,
X2, X3)T. Hence, extra equations associated with additional cameras
and other geometrical constraints should be added to find a unique
least-squares solution of X. The collinearity equations contain the
exterior orientation parameters ðo,f,k, X1

c , X2
c , X3

c Þ, interior orienta-
tion parameters ðc,x1

p , x2
pÞ and are supplemented with the lens

distortion parameters (K1, K2, P1, P2).
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2.3. Notes on collinearity equations

It is common to mix units in photogrammetric computations.
For example, x, y, c, xp, and yp can be in one consistent set of units
(typically mm), while X, Y, Z, Xc, Yc, and Zc can be in another
consistent set of units (typically meters or inches). This is clearly
illustrated in Eq. (2.7). As long as the length units are consistent
for the left-hand and right-hand side in Eq. (2.7), respectively, the
correct relationship is preserved. Note that if one chooses to use
pixels as the unit of length for the image data, then one would
need to use pixels for the principal distance and principal point as
well. The more typical choice of mm for units of length in the
image is largely due to the almost universal practice of using mm
to denote the focal length of lenses.

It is useful to consider the collinearity equations when
the Euler angles are all set to zero. The rotation matrix then
becomes the identity matrix consisting of a diagonal matrix of
ones. If the collinearity equations are further simplified by setting
xp and yp at zero and Xc and Yc at zero, the equations are reduced
to x¼�cX/Zc¼X mag and y¼�cY/Zc¼Y mag, where mag¼�c/Zc

is a magnification factor. This illustrates that for this simplified
geometry where the object space motion at Z¼0 is parallel to the
image plane, the object-to-image relationship is governed by the
magnification factor only. In fact, this directly corresponds to
Eq. (2.7) in the (m1, m2, m3) frame.

The standard Gaussian object-image relationship, 1/f¼1/oþ1/i,
can be used to estimate the principal distance c if the image distance
i in the equation is replaced with c and the object distance o at which
the lens is focused is known. For example, if f¼25 mm and the lens
focal setting is adjusted for o¼60 in, a reasonable estimate for c is
25.42 mm. In order to obtain proper focus at 60 in the lens is
translated about 0.42 mm away from the image sensor. The correct
principal distance to use when the 25-mm focal length lens is
focused on an object distance of 60 in is 25.42 mm. Note that the
Gaussian object–image relationship only applies for the particular
distance at which the lens is focused. This object distance is not
necessarily where a given target in a 3D object field might lie. This
relationship does not apply throughout the object field, and it only
holds for a particular object distance. For instance, if the 25 mm focal
length lens in the above example were focused on infinity, the
correct principal distance to use would be 25 mm for all object
Perspective
center

Position 1

Pe

P

Lens
Position 1Optical axis

Fig. 2.5. Principal point (xp,yp) and point of symmet
distances, not just for objects far away. Likewise if the lens happened
to be focused at 60 in then the correct principal distance to use for all
object distances (even if not located at 60 in) would be the value of
25.42 mm that we found above. The magnification is, in general, a
function of the object field location given by the ratio of the distance
from the rear perspective center to the image point divided by the
distance from the front perspective center to the object point.

2.4. Misaligned image plane

2.4.1. Reference symmetry point

The correct reference point to use for the lens distortion is the
principal point (xp, yp) only if the optical axis of the lens is
perpendicular to the image plane. If the image plane is tilted (for
instance as can occur with small format non-metric cameras), the
point of symmetry for distortion (xs, ys), which essentially locates the
optical axis of the lens, is the correct reference point to be used for
distortion (see Fig. 2.5). However, some calibration methods such as
the bundle adjustment or optimization cannot effectively separate
the two points and thus use a single point that is carried in the
solutions and calibrations labeled as the principal point. If no radial
distortion is present, the single reference point found by bundle
adjustment or optimization will be essentially the principal point. If
the distortion is present, however, the single reference point found by
bundle adjustment or optimization will be due to the combined effect
of (xp, yp) and (xs, ys), depending on the relative influence of the
imaging portion [correctly referenced to (xp, yp)] or the influence of
the distortion [correctly referenced to (xs, ys)]. In general, if there is
little distortion and/or the lens is well aligned, (xp, yp) is an adequate
reference point for distortion. If not, the point of symmetry (xs, ys)
should be used if available. Most textbooks use (xp, yp) as the
reference for lens distortion, which implicitly assumes an untilted
lens.
2.4.2. Lens–image misalignment relationship

For an ideally constructed lens, all centers of curvature of the
various lens surfaces that make up the lens are assumed aligned
along a common axis referred to here as the optical axis of the
lens. Such a perfectly constructed lens with the optical axis
perpendicular to the image plane would have no decentering
rspective
center
osition 2

Xs, Ys

Xp, Yp (Position 2)

Xp, Yp (Position 1)

Lens
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Image
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ry (xs,ys) for zoom lens with tilted image plane.
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distortion, but might still suffer from radial distortion. For the
perfectly constructed lens, the undistorted image plane coordi-
nates are given by the intersection in the image plane of a ray
from a given object point which enters the lens at the front
perspective center and exits the lens at the rear perspective
center on its way toward the image plane. This relationship is
described with the collinearity equations. Radial distortion is
considered to be a function only of the undistorted image
coordinates on the image plane which is perpendicular to the
optical axis and therefore, with this model, the radial distortion
would not vary with the object distance for a fixed principal
distance.

For a misaligned image plane and ideally constructed lens,
the photogrammetric principal point used in the imaging
relationship (collinearity) is not located at the intersection of
the optical axis with the image plane, but rather at the intersec-
tion of a perpendicular line from the rear perspective center to
the image plane. Instead, the intersection of the optical axis
with the image plane locates the proper point of symmetry to
be used in the computation of distortion corrections. The varia-
tion of the location of the principal point, (xp,yp), as the lens is
shifted along the optical axis (mimicking a zoom lens) is depicted
in Fig. 2.5. For zoom lenses, the variation in the principal point as
a function of zoom setting (varying principal distance) is often
linear. The point of symmetry (xs,ys) remains fixed while the
principal point, being defined as the foot of the perpendicular line
to the image plane from the rear perspective center, varies with
zoom setting. Fig. 2.6 illustrates the displacement vectors asso-
ciated with the variation of lens distortion at different zoom
settings.

In analytical self-calibration, only one photogrammetric prin-
cipal point can generally be solved for. If the radial distortion is
zero, this single point will correspond to the principal point, even
if the image plane is misaligned. For a misaligned image plane
when radial distortion is present, the single point found will
approximate the principal point, but may have some additional
error due to competition in the solution between imaging and
distortion. This is because imaging is properly referenced to the
principal point, whereas lens distortion is properly referenced to
the point of symmetry. When comparing image coordinates of an
aligned and a misaligned image plane there will be an ‘‘apparent’’
distortion that is analogous to the ‘‘apparent’’ distortion between
two images (neither of which suffers any lens distortion) of an
object from different perspectives.
Fig. 2.6. Distortion of a zoom lens as a function of zoom setting (focal length).
3. Camera calibration/orientation and intersection

Camera calibration/orientation is a key element of photogram-
metric or videogrammetric measurements. Analytical camera
calibration/orientation techniques have been used to solve
Eq. (2.3) for the determination of the interior and exterior
orientation parameters and lens distortion parameters of the
camera/lens system [52,45,95,106]. The term ‘camera calibration’
generally refers to the determination of the interior orientation
parameters, while the term ‘camera orientation’ generally refers
to the determination of the exterior orientation parameters.
Camera calibration and orientation are often combined with the
simultaneous determination of target coordinates in a ‘bundle-
adjustment’ solution to the collinearity equations, given appro-
priately diverse views of the object of interest from a large
number of images. Since the collinearity equations coupled with
additional parameters for lens distortion are non-linear, the
iterative method of least-squares estimation has been used as a
standard technique for the solution of the collinearity equations
in photogrammetry. However, direct recovery of the interior
orientation parameters including (c,xp,yp) is often impeded by
inversion of a singular or ill-conditioned normal equation matrix
that mainly results from strong correlation between the exterior
and interior orientation parameters. In order to reduce the
correlation between these parameters and enhance the determin-
ability of (c,xp,yp), Fraser [46,45] suggested the use of multiple
camera stations, varying image scales, different camera roll angles
and a well-distributed target field in three dimensions. These
schemes for selecting suitable calibration geometry could
improve the properties of the normal equation matrix.

For most aerospace applications where optical access and
preparation time are limited and cameras are usually fixed,
however, a simple single-image method of camera calibration is
desirable that has a minimum impact on productivity and is less
time consuming than other calibrations [67]. In Appendix A, the
Direct Linear Transformation (DLT) method and a closed-form
resection solution given by Zeng and Wang [111] are briefly
described, which are useful for initial estimation of the exterior
orientation parameters of a camera based on a number of known
targets. An optimization method for comprehensive camera
calibration developed by Liu et al. [67] is also described, which
can determine the exterior orientation, interior orientation and
lens distortion parameters (as well as the pixel aspect ratio of a
CCD array) from a single image of a known 3D target field. The
optimization method, combined with the DLT, allows automatic
camera calibration without an initial guess of the orientation
parameters. Camera calibration methods used in computer vision
have been reviewed and evaluated by Salvi et al. [97].

3.1. Initial estimation

The DLT, originally proposed by Abdel-Aziz and Karara [1], can
be very useful to determine approximate values of the camera
parameters. In Appendix A, the DLT equations are obtained by
rearranging the terms in the collinearity Eq. (2.3), where the DLT
parameters are related to the camera exterior and interior
orientation parameters [77]. Unlike the standard collinearity
equations, the DLT equations are linear when the lens distortion
terms are neglected. In fact, the DLT is a linear treatment of what
is essentially a non-linear problem at the cost of introducing two
additional parameters. Without using an initial guess, a linear
least-squares solution can be directly obtained. Because of its
simplicity, the DLT is widely used in both non-topographic
photogrammetry and computer vision. When the lens distortion
cannot be ignored, however, iterative solution methods are still
needed and as a result the DLT loses its simplicity. In general, the
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DLT can be used to obtain fairly good values of the exterior
orientation parameter and the principal distance, although it
gives a poor estimate for the principal-point location. Therefore,
the DLT is valuable since it can provide initial approximations for
more accurate methods like the optimization method discussed
below for comprehensive camera calibration. In general, the DLT
needs at least six targets and it is not appropriate for a planar/
near-planar target filed. In addition, as shown in Appendix A, the
closed-form resection solution given by Zeng and Wang [111]
based on three points is useful for an initial estimation of the
exterior orientation parameters.

3.2. Optimization method

To deal with the singularity problem in solving the collinearity
equations, the optimization method developed by Liu et al. [67] is
based on the following insight. Strong correlation between the
interior and exterior orientation parameters leads to the singu-
larity of the normal-equation-matrix in a least-squares method
for a complete set of the camera parameters. Therefore, to
eliminate the singularity, a least-squares method is used for the
exterior orientation parameters only, while the interior orienta-
tion and lens distortion parameters are calculated separately
using an optimization scheme. As shown in Appendix A, this
optimization method contains two separate interacting proce-
dures: resection for the exterior orientation parameters and
optimization for the interior orientation and lens distortion
parameters. It is noted that direct optimization in the whole
parametric space (14 parameters) often converges to an inaccu-
rate result due to the complicated topology in the high-dimen-
sional space, depending on initial values and perturbations.
A practical alternative is to decompose the high-dimensional
space into smaller subspaces and solve the optimization problems
interactively with different methods in these subspaces. Natu-
rally, the parametric space can be decomposed into the exterior
orientation parameters (six parameters) and the interior orienta-
tion parameters plus the lens distortion parameters and pixel-
spacing-aspect ratio (a total of eight parameters).

The objective function for minimization is the standard devia-
tion of the estimated interior orientation parameters on a 3D
target field such as std(xp) that has a simple topological structure
near the global minimum point. In other words, the optimization
problem is to seek the correct values of the interior orientation
parameters by minimizing the objective function. A 3D field of
targets on a step configuration is simulated as shown in Fig. 3.1.
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std(xp)¼0, std(xp) exhibits a single ‘‘valley’’ structure such that
the optimization problem is well defined.

Generally, the topological structure of std(xp) is affected by the
three-dimensionality of the target field. For the step target field,
the step height H characterizes the three-dimensionality. Fig. 3.3
shows the topological structures of std(xp) for H¼6 and 2 in. Note
that the two surfaces are partially in contact. Evidently, the
stronger three-dimensionality of the target field with a larger H

produces a steeper ‘‘valley’’ in topology. From a standpoint of
optimization, the stronger three-dimensionality leads to faster
convergence. Fig. 3.4 shows effect of the three-dimensionality
(step height H) on convergence of the principal distance in the
optimization solution. The similar behavior of convergence is
observed for the other parameters. Clearly, the strong three-
dimensionality of the target field improves convergence rates.
For a planar field of targets (H¼0), the optimization method does
not generally converge to the true values. Hence, the optimization
method requires a 3D target field.
Fig. 3.3. Effect of three-dimensionality (step height H) on topology of the

objective function near the minimum point, (a) H¼6 in, (b) H¼2 in.

Fig. 3.4. Effect of three-dimensionality (step height H) on convergence of the

principal distance in the optimization solution.
The topological structure of std(xp) or std(yp) can also be
affected by random disturbances on the targets. To simulate this
effect, the target coordinates in the image are disturbed by
mathematically adding a zero-mean random disturbance with a
Gaussian distribution. Fig. 3.5 shows the topological structures of
std(xp) at disturbance levels of 1 mm and 6 mm (these disturbance
levels correspond to 0.08 and 0.46 pixel for a typical CCD video
camera system). The flattening of the sharp ‘‘valley’’ near the
minimum point in Fig. 3.5 implies that noise in the image leads to
a slower convergence rate and produces larger errors in the
optimization computations. Fig. 3.6 shows typical errors of
the interior orientation parameters (c, xp, yp) as functions of the
disturbance level, where the correct simulated values of (c, xp, yp)
are (28, 0.2, 0.08) (mm). For a typical CCD video camera, for
example, the random error in the target centroid measurement is
usually less than 0.3 mm (0.023 pixel). Thus, the corresponding
predicted precision error in the estimated values of (c, xp, yp) by
the optimization method is no more than 0.02 mm. Besides
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std(xp), other appropriate objective functions may also be used.
An obvious choice is the root-mean-square (rms) of the residuals
of calculated object space coordinates of all targets. In fact, it is
found that these objective functions are qualitatively equivalent
in the optimization problem.
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3.3. Laboratory calibration

In order to evaluate the accuracy of the optimization method,
camera calibrations for an Hitachi CCD camera with a Sony zoom
lens (12.5 to 75 mm focal length) and an 8 mm Cosmicar televi-
sion lens were made in a NASA Langley laboratory. The measure-
ment system consisted of a CCD camera, a personal computer
with a Matrox Pulsar frame-grabber board, a step target plate, and
software. A target-tracking program was used to track targets and
compute target centroids [66]. The CCD array size of the Hitachi
camera was 8 mm by 6 mm. The digitized image size was 640 by
480 pixel with vertical and horizontal pixel spacings equal to
13.0 mm and 12.9 mm, respectively. The random error in the
measurement of target centroids was less than 0.3 mm
(0.023 pixel). The 3D target field for camera calibration was
provided by a three-step target plate with 54 circular retro-
reflective targets of 0.5 in diameter, a 2.0 in step height H and
2.0–in spacing between neighboring targets (see Fig. 3.7). The
coordinates of the targets on the plate were measured a priori

with a three-dimensional coordinate machine with an accuracy of
0.001 in.

For comparison, optical techniques described by Burner et al.
[17], were also used for calibration. The laser-illuminated, dis-
placed-reticle technique was used to determine the horizontal
and vertical pixel spacing. The principal-point location was found
by the unexpanded, laser-illumination technique, and the lens
distortion parameters were determined from images of a calibra-
tion plate suitably aligned with the camera axis. Fig. 3.8 shows
the principal distance given by the optimization method versus
zoom setting for the Sony zoom lens. Fig. 3.9 shows the principal-
point location and radial distortion coefficient K1 as a function of
the principal distance for the Sony zoom lens. The error bars in
the principal-point location are determined based on replication
calibration data using the optimization method collected at
different camera roll angles and positions over two days. The
results obtained by the optimization method are in reasonable
agreement with those given by Burner [18] using the optical
techniques for the same lens. The optimization method was also
used to calibrate the Hitachi CCD camera with an 8 mm Cosmicar
television lens. Table 3.1 summarizes the calibration results for
the Hitachi CCD camera with 8 mm Cosmicar TV lens. The interior
orientation and lens distortion parameters obtained by the
optimization method are consistent with those obtained by the
optical techniques. The accuracy of camera calibration is usually
represented by the residual of the image coordinate calculation.
Typically, the optimization method has a residual of 1 mm or less
Fig. 3.7. Step calibration target plate.

c (mm)
10 20 30 40 50 60 70 80 90

K
1

-0.0020

-0.0015

-0.0010

Fig. 3.9. (a) Principal-point location and (b) radial distortion coefficient as a

function of the principal distance for a Sony zoom lens connected to an Hitachi

camera with an 8 mm by 6 mm CCD array.



Table 3.1
Calibration for Hitachi CCD camera with 8 mm Cosmicar TV lens.

Interior orientation c (mm) xp (mm) yp (mm) Sh/Sv K1 (mm�2) K2 (mm�4) P1 (mm�1) P2 (mm�1)

Optimization 8.133 �0.156 0.2014 0.99238 0.0026 3.3�10�5 1.8�10�4 3�10�5

Optical techniques 8.137 �0.168 0.2010 0.99244 0.0027 4.5�10�5 1.7�10�4 7�10�5
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in the image plane for an 8 mm by 6 mm CCD array, depending on
the accuracy of the coordinates of the target plate.

3.4. Bundle method

The bundle method originally developed by Brown [15]
provides simultaneous consideration of all sets (or ‘Bundles’) of
photogrammetric rays from all cameras. Referring back to the
collinearity equations, Eq. (2.3), a configuration of m cameras
imaging n points will yield a total of 2m�n equations if all points
can be seen in all images. Here, it is assumed that the interior
parameters (c, xp, yp) and the lens distortion parameters are
known through calibration for all cameras. There are the six
unknown exterior parameters (o,f,k, Xc, Yc, Zc) of the collinearity
equations for each camera and three unknown coordinates (X, Y,
Z) for each point. The total number of the unknowns is 6mþ3n. To
determine a unique solution for both the exterior orientation
parameters and coordinates, the inequality 2m�nZ6mþ3n

should hold. Thus, the number of cameras required for the bundle
method is related to the number of points by mZ3n/(2n�6).
When nZ12 (more than 12 points), two cameras are sufficient to
determine the coordinates of the points. Nevertheless, more
cameras will lead to a more accurate solution.

Intuitively one can see that for even a small number of
cameras and a modest number of points the resulting number
of equations can add up to hundreds, if not thousands. Fortu-
nately, a least squares adjustment method will produce a much
smaller set of the normal equations. But, even the number of
normal equations can be large for many projects with hundreds of
points, though it is possible through matrix manipulation to
reduce the order of the ‘reduced’ normal equations to 6m, where
m is the number of images. The bundle adjustment algorithm [16]
first solves for the exterior orientation parameters as unknowns
and then computes the object point coordinates (X, Y, Z) essen-
tially through a spatial intersection approach. Initial estimate of
the exterior orientation parameters can be given using the closed-
form resection solution [111] based on three control points that
establish the reference coordinate system. Then, the coordinates
of all the points are determined by the photogrammetric inter-
section method. An iteration scheme can be applied to reduce the
residual of least-squares estimation.

3.5. Photogrammetric intersection

Given the camera interior and exterior orientation and lens
distortion parameters, the object-space coordinates (X1, X2, X3) or
(X, Y, Z) can be obtained by solving the collinearity equations
when a pair of the corresponding image points is identified in two
or multiple images. This procedure is photogrammetric intersec-
tion. In the case where only a single camera can be utilized, some
geometrical constraint such as one fixed coordinate should be
used in order to obtain a unique solution for the object-space
coordinates. Therefore, establishing the point correspondence
between two or multiple images for the same physical point in
the object space is essential to intersection. This is the point
correspondence problem in 3D vision. Any given point in the
image 1 corresponds to an epipolar line in the image 2 that is a
projection of a line connecting the object-space point and the
image point through the optical center of the camera 1 onto the
image 2. As indicated in Appendix B, the fundamental matrix the
Longuet-Higgins equation maps a point in the image 1 to its
epipolar line in the image 2 and vice versa. For two calibrated
cameras, the epipolar lines in two images can be directly
determined from the collinearity equations. The Longuet-Higgins
equation indicates that a point in the image 1 corresponds to its
epipolar line on the image 2 and vice versa. Therefore, the point
correspondence is not uniquely established between two images.
To establish the point correspondence between images, at least
four cameras (or four images) are needed. In many aerospace
applications, the number of targets is not large such that the point
correspondence between images can be manually determined.
The point correspondence and intersection are further discussed
in Appendix B.
4. Typical photogrammetric systems

A typical photogrammetric or videogrammetric measurement
system for aeroelastic deformation of wings and bodies in wind
tunnel testing includes CCD cameras, computer with an image
acquisition frame grabber board, illuminating lights, and targets
distributed on a model. Due to the limited optical access in
production wind tunnels, photogrammetric methods based on
multiple images taken at different positions and angles are often
difficult or impossible to deploy. Therefore, photogrammetric
systems for wind tunnels may utilize non-optimal geometries
consisting of a limited number of cameras (and in some cases may
be limited to only one camera). Fig. 4.1 shows schematics of a
single-camera and two-camera videogrammetric model deforma-
tion (VMD) measurement systems for wind tunnel testing. The
sub-components of the photogrammetric system are described
below. Burner et al. [24] compared photogrammetric techniques
with other optical techniques for measuring model deformation
in wind tunnels such as projection moiré interferometry and the
commercially available OptotrakTM RH2020 system. It is found
that no one technique is best for all applications or facilities. The
techniques are also not necessarily mutually exclusive and in
some cases can be complementary to one another.

4.1. Cameras

4.1.1. Still cameras

For many years the only cameras used for photogrammetry
were large format metric cameras [80]. A camera is deemed
metric if both its internal geometry and the distortion character-
istics of the lens are repeatable, stable and amenable to modeling
via parameters that can be estimated accurately through the
process of photogrammetric calibration. The state of the art in
metric cameras is represented by the INCA series of digital
cameras [see Fig. 4.2(a)] from Geodetic Services, Inc (GSI). In
1991, Kodak introduced the DCS100 and immediately changed
the ‘metric’ playing field with its high resolution (1524 by 1028)
CCD sensor packaged in a standard 35 mm SLR camera. The latest
release in the DCS family, the PRO SLR has made a significant leap
in resolution and available features with the current model
supporting a 14 megapixel CMOS imager [see Fig. 4.2(b)].



Fig. 4.1. Schematic of (a) single-camera system and (b) two-camera system.

Fig. 4.2. (a) INCA3 metric camera from Geodetic Services (GSI), (b) Kodak DCS760

6 megapixel digital SLR camera.

Fig. 4.3. Examples of modern CCD digital video cameras.
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The DCS family, while widely supported by photojournalists, has
been also been adopted by photogrammetrists in various applica-
tions such as aerospace tool verification, the measurement and
monitoring of large engineering structures and architectural
recording [102].
Traditionally, photogrammetry is carried out by moving a
single still camera around a rigid structure taking photographs
from many observations angles. Although this approach can be
used for static measurement of structures, it is more common for
aerospace testing to position a number of remotely triggered
cameras in fixed locations around the structure. This allows for
dynamic recording if the framing rate is sufficient and the
cameras are properly synced.
4.1.2. Video cameras

The modern CCD digital video camera, several examples of
which are shown in Fig. 4.3, has also found application in the
photogrammetric field. While the predecessors of the these
cameras offered low resolution, typically (640 by 480 pixel), and
found limited applications in photogrammetry, the current range
of CCD video camera systems, in terms of features, quality,
number of manufacturers and cost, is enormous and many have
photogrammetric potential. In videogrammetry systems, the
images obtained from the video cameras are generally passed
directly to a host personal computer (PC) for storage and proces-
sing. A frame grabber is typically designed to reside in the host
computer and provide the interface between the video camera
and the computer. The frame grabber under software control can
adjust camera settings and continuously read the video output of
the camera, and in some cases carry out real time processing
tasks. In the case of multi-camera systems the frame grabber may
provide process synchronization, a critical aspect in recording
images as part of dynamic analysis. A more detailed discussion of
the functionality of frame grabbers is provided by Shortis and
Beyer [102].

Unlike studies of static structures, studies of dynamic behavior
must be performed with an array of fixed cameras because the
frame acquisition of all cameras must be synchronized to avoid a
change in the structure occurring between image acquisitions
across all camera locations. Usually still cameras have insufficient
framing rates to effectively measure the motion in dynamic
studies, necessitating the use of video cameras. Although video
cameras have a much higher frame rate than still cameras, the
limited bandwidth for image readout, frame grabbing, and storage
introduces an image resolution to frame rate trade off. Digital
video technology is improving rapidly, and manufactures are
offering frame grabbers based on the PCI-X technology that
promises peak transfer rate speeds between the frame grabber
and the host of 800 MB/s.

This issue of video camera synchronization is important in many
studies of dynamic behavior, and the choice of video camera can be
critical. With analog video cameras it is common to configure one of
the cameras as a master camera, which operates in a free-run mode
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at its internal frame rate. All of the remaining cameras are config-
ured as slave cameras and are required to synchronize their video
clocks to the master camera’s video signal, thereby ensuring
commonality for the integration time of all cameras. In recent times,
however, digital video cameras have supplanted analog cameras
because of their significantly higher quality and better suitability for
videogrammetry.

Digital video cameras usually have an asynchronous reset
input that can be used to synchronize their integration periods.
However, some cameras do not respond immediately to their
asynchronous reset trigger signal and instead internally align this
trigger signal with some internal clock event (such as the
horizontal line clock). Such internal trigger signal clock alignment
can lead to jitter between the integration periods between the
cameras (of up to 60 ms for a 16 kHz horizontal clock), which may
be significant in some applications. Hence, depending on the
application, it may be important to choose a camera with a true
asynchronous reset.
4.2. Targets and lighting

4.2.1. Targets on wind tunnel models

Targets are placed on a model surface at locations where
deformation measurements are desired. As shown in Fig. 4.4(a),
for a single-camera VMD measurement system in a wind tunnel,
Fig. 4.4. (a) Typical target rows on a model, and (b) typical image of polished paint

targets used for videogrammetric model deformation measurements.
targets should be placed in rows on the wing at known spanwise
location in order to obtain a solution of the collinearity equations
with two equations for two unknowns (X, Z). Both retro-reflective
targets and white diffuse polished paint targets, as shown in
Fig. 4.4(b), have been used. The retro-reflective targets yield a
high contrast image when a light source is placed near the camera
and are the targets of choice if aerodynamic considerations will
allow the additional thickness and roughness. The white diffuse
polished paint targets require a dark background to achieve high
contrast. Dark surfaces seen in reflections from highly polished
metal models produce sufficient contrast for the white diffuse
targets. This helps better the contrast and ability to discriminate
false targets on highly reflective models. False targets are also
much less of a problem when retro-reflective targets are used in
place of diffused surface. Generally, the aperture on a camera lens
can be stopped down more when retro-reflective targets are in
use. Ideally the thickness of the targets should be small to reduce
their intrusiveness to flow. Retro-reflective targets are typically
0.004 in thick, with a surface roughness of 200 min, whereas the
polished paint diffuse targets are typically 0.0005 in thick with a
surface roughness of less than 10 min. Ordinary lights (non-laser)
can provide sufficient illumination for retro-reflective (when
placed near the camera) and for white diffuse targets. In addition
to retro-reflective and white targets, black targets have also been
used, particularly when the VMD technique was used simulta-
neously with pressure-sensitive and temperature-sensitive
paints. Model deformation data can be used not only to under-
stand the aeroelastic properties of the model, but can also be used
to generate a deformed surface grid of the model for improved
CFD calculation and PSP mapping [9].
4.2.2. Target generation for gossamer structures

Retro-reflective targets are recognized as the ‘‘gold’’ standard
for targeting in industrial applications of precision photogram-
metry [48]. They offer good contrast and target separation and
provide significantly greater illumination return for applications
where the viewing angle is under 601 off axis. In general, the
paper-thin quality of retro targets provides a minimal impact on
the object to be measured. However, it is recognized that the size
and weight may impact the structural response of gossamer-type
structures (see Section 10). With judicious use of targets this
impact may be minimized. Although retro-reflective targets
provide excellent high-contrast images, they suffer from disad-
vantages associated with physically attaching targets to the
gossamer structure. White-light projection is an alternative that
offers the advantage of non-contact measurement, thereby elim-
inating the problems associated with attached targets. It works
well on diffuse material because, by definition, the projected light
is scattered in all directions allowing the acquisition of high
contrast images from any viewing angle. However, gossamer
structures are often manufactured from highly transparent or
specularly reflective aluminum-coated materials that provide
little diffuse scattering, which in turn causes difficulties when
attempting to photograph projected targets. There are two major
disadvantages of white-light projection for these applications. The
first is the appearance of ‘‘hot-spots’’ caused by direct reflections
of illumination sources. Second, it requires very long exposure
times, limiting its use to static measurements. Laser-induced
fluorescence (LIF) target generation has recently been demon-
strated as a viable alternative technique for photogrammetric
target generation. This method uses LIF to generate diffuse-like
scattering that allows image acquisition with fast shutter speeds
and high imaging rates, and does not suffer from the disadvan-
tages associated with either attached retro-reflective or white-
light projected targets. LIF target generation has been studied and



Fig. 4.5. Retro-reflective targets on two large gossamer structures, (a) 5 m inflatable parabolic reflector, and (b) scale-model solar sails.

Fig. 4.6. Approximately 4000 projected dots on a thin-film opaque membrane.

T. Liu et al. / Progress in Aerospace Sciences 54 (2012) 1–5814
applied to polymer membranes doped with laser-dye to aid the
LIF process.

It is useful to compare the uncommon dot-projection technique
with the commonly used and well-understood retro-reflective
targeting technique. Several advantages and disadvantages of each
method for gossamer applications have been discussed by Pappa
et al. [56,85]. Fig. 4.5(a) shows a 5 m inflatable parabolic reflector
with 550 6-mm-diameter retro-reflective circular targets. They
were installed on this ground test article to measure the reflector
shape with photogrammetry. The rms deviation of the surface
from an ideal parabolic shape was measured with these targets to
be about 1 mm. The targets have never been removed, and it
would be difficult to do so now without destroying the reflector.
For this reason, retro-reflective adhesive targets are generally not
appropriate for measuring thin-film membranes whenever the
targets must be removed afterwards. Fig. 4.5(b) shows two
quadrants (one-half) of a 10 m square solar sail with 80 28-mm-
diameter retro-reflective circular targets. It is a pathfinder solar
sail model used for analytical and experimental research and
development. Mode shapes of the structure at the target locations
were measured with a scanning laser vibrometer. Dynamic
response measurements using videogrammetry can also be made
with these targets. The static shape of the structure, however,
would be inadequately characterized using photogrammetry with
these targets because the targets are too large and sparse relative
to the wavelength of the wrinkles.

Projected dots of light are an attractive alternative to retro-
reflective targets for measuring thin-film membrane structures.
Fig. 4.6 shows an example of approximately 4000 circular dots
projected onto a freely hanging strip of frosted plastic membrane.
Projected dots offer some obvious advantages over adhesive
targets for shape and dynamic measurements of membranes
(e.g., thousands of targets can be used without adding mass or
stiffness), but there are some disadvantages as well. For example,
on shiny membranes, the majority of the projected light will
specularly reflect from the surface and not enter cameras located
at most viewing angles relative to the projector. This causes
significant light intensity variation in the images across the area
of the projected dots, complicating the photogrammetric analysis
and limiting the attainable measurement accuracy. Not surpris-
ingly, the reflection characteristics of membrane surfaces directly
affect the quality of images measured with the dot-projection
technique. Diffuse surfaces are generally best for photogramme-
try since light scatters in all directions resulting in more-uniform
contrast in the images. But, in many cases, gossamer structures
will require reflective or transparent membranes. Reflective
surfaces are more difficult to measure than diffuse surfaces for
the reason stated above. Transparent membranes are the most
difficult of all since projected light passes directly through the
material. Note that all membranes have some degree of each of
these optical characteristics; that is, membranes are never totally
diffuse, totally reflective (specular), nor totally transparent.

Fig. 4.7 shows images obtained by simultaneous dot projection
on both shiny and diffuse surfaces using side-by-side pieces of
aluminized Kapton and matte-white Mylar films. Fig. 4.9(a) shows
the test configuration. The three images in Fig. 4.7(b)–(d) were
recorded using camera exposure times ranging from 2.5 to 20.0 s.
For this test, the projector was located directly in front of the
membranes and the camera was about 301 to the left. The target
contrast is clearly superior on the matte surface for all exposure
settings. On the aluminized surface, the target contrast varies
significantly within each image and with changes in the exposure
time. Variable target contrast of this magnitude complicates, but
does not preclude, accurate photogrammetric analysis. With shiny
membranes, the dot intensity is greatest in the images where the
angle of reflection off the membrane is closest to the angle of
incidence from the projector.

Different styles of projectors used to broadcast dot-projections
are shown in Fig. 4.8. The images presented in Figs. 4.6 and 4.7
were obtained with the consumer-grade Kodak slide projector
shown in Fig. 4.8(a). It is bright enough for dot-projection
photogrammetry of relatively small objects only (e.g., under
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Fig. 4.7. Comparison of projected dots on adjacent shiny and matte-white membranes at various image exposure settings, (a) test configuration, (b) 2.5 s exposure, (c) 8.0 s

exposure, and (d) 20.0 s exposure.

Fig. 4.8. Projectors used in this research, (a) Standard Kodak carousel, (b) high-intensity carousel, (c) digital projector, and (d) Geodetic PRO-SPOT.
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2 m). A disadvantage of digital projectors is the pixelation that
occurs in the projected dots, causing some reduction in target
centroiding accuracy. Fig. 4.8(d) shows a professional PRO-SPOT
projector manufactured by Geodetic Services, Inc. specifically for
dot-projection photogrammetry [48]. It uses a high-intensity flash
tube that is fired by the camera. Slides with up to 22,500 dots are
available for this unit.

As previously discussed, transparent and reflective membranes
are difficult or impossible to measure with standard white-light
dot projection because the majority of the projected light passes
directly through the membrane (in the transparent case) or is
reflected in undesirable directions (in the reflective case). Conse-
quently, images with sufficiently high contrast are difficult to
obtain. The images recorded to date with dot projection on
reflective membranes required long image exposure times, mak-
ing dynamic measurements impossible. To overcome these
problems, transparent membranes have been manufactured con-
taining a small quantity of fluorescent laser dye. When excited
with a laser light source, the dye absorbs a fraction of the laser
energy and consequently fluoresces at a longer wavelength. This
fluorescence is emitted in all directions providing a significantly
more predictable and repeatable dot pattern that can be viewed
from any angle [36,38]. Fig. 4.9(a) shows the test configuration for
a proof-of-concept demonstration of this proposed new approach
for dot-projection photogrammetry and videogrammetry of
membranes.Fig. 4.9(b) shows the test article, which is a small
sample of dye-doped CP-2 polyimide membrane wrapped around
the top of a white cardboard tube. Note the almost transparent
nature of the material. The membrane was illuminated with a
laser-generated dot pattern using a 2 mW green (544 nm)
helium-neon laser and a diffractive beam splitting element.
Fig. 4.9(c) shows a typical digital photograph taken with a low-
pass optical filter placed in front of the camera. The filter blocks
the reflected green laser light but allows the orange fluorescence
light from the membrane dye to pass through. Note that laser
speckle is not a problem because photographs are taken of the
self-generated (orange) dots of light and not the directly reflected
(green) dots of light from the laser. Using several images taken at
other viewing angles, an accurate 3D model of the membrane,
shown in Fig. 4.9(d), was obtained.

Note that the bottom portion of the membrane with the white
cardboard backing produces spots in Fig. 4.9(c) that are almost
four times brighter than for the membrane without a backing.
This is because the laser energy is scattered by the cardboard and
passes though the polymer a second time, effectively doubling the
laser (and hence fluorescence) intensity. The fluorescence emitted
backwards is also scattered by the cardboard and becomes visible
from the front. A similar increase in brightness is expected for
doped transparent membranes that have a reflective back coating,
such as a solar sail. The bright spot in the center of the pattern is
due to the non-diffracted zero-order laser energy from the
diffractive beam splitter. Experimentation continues with pulsed
laser systems that will potentially allow acquisition of images at
video frame rates and hence will provide the capability to make
dynamic measurements of dye-doped transparent and reflective
membranes that are currently impossible with white-light dot
projection systems.

It may be easy to misunderstand exactly what is being
measured with the dot-projection technique. This is particularly
true for dynamic measurements made with videogrammetry.
Clearly, the location of each projected dot on a structure matches
the location of the underlying surface. The photogrammetric
process accurately computes the 3D coordinates of the center
(centroid) of each dot at each instant of time [83,84]. Thus,
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Fig. 4.9. Laser-induced fluorescence for dot-projection photogrammetry of transparent membranes, (a) test configuration for proof-of-concept experiment, (b) transparent

CP-2þdye, (c) fluorescence from laser dot projection, and (d) 3D surface by photogrammetry. (For interpretation of the references to colour in this figure legend, the reader

is referred to the web version of this article.)

Fig. 4.10. Coded targets used to support photogrammetric measurements.
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photogrammetry generates a set of 3D points, a so-called point
cloud, defining the shape of the structure at the target locations at
any instant of time. For static shape measurements, this calcula-
tion is performed once. For dynamic measurements, the target
coordinates are tracked versus time, generating a series of point
clouds and each of these point clouds also accurately defines the
shape of the structure at the corresponding instant of time.

However, projected dots do not move with the structure when it
vibrates or changes shape in the same way as attached targets do,
which is typically the point of confusion. This is an important
fundamental difference between attached and projected targets for
dynamic measurements. An attached target will move in all three
coordinate directions with the structure. Videogrammetry calculates
x, y, and z-direction time histories for each attached target that
match the motion of the underlying structure in all three directions.
A projected dot, however, can only move along a straight line either
towards or away from the projector regardless of how the structure
moves. Note that a projected dot on a surface represents the
intersection of the surface and a stationary ray of light from the
projector. Regardless of how the structure vibrates or changes shape,
the intersection point for that dot will always lie somewhere on the
same ray of light. With projected-dot targets, videogrammetry will
again correctly measure the dynamic 3D movement of each target,
but in this case the path of each target always follows a straight-line
course moving either towards or away from the projector.

Besides ordinary targets, coded targets are introduced in photo-
grammetric systems. Their automatic detection, recognition, identi-
fication, and measurement have facilitated fully automatic exterior
orientation and 3D object point determination. In many photogram-
metric projects it is highly desirable to have a large number of
targeted points to better approximate the true shape of the object.
To automate the process of target identification, many software
vendors have included coded target detection in their image scan-
ning algorithms. The codes, which are generally in the form of either
a ring or geometric dot pattern, form unique identifiers that are
detected, labeled and measured automatically by software. When
visible in multiple images, the codes serve as either control or tie
points for determining camera position and orientation. Generally, a
minimum of 4 to 6 codes is required in each image to support
automatic identification of all other targets in the image. Fig. 4.10
provides a representative view of ring-shaped coded targets
included in a measurement project.

4.3. Software

4.3.1. Model deformation measurement

Software for videogrammetric model deformation (VMD)
measurements is developed specially for wind tunnel testing,
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including a suite of routines for image acquisition, target-tracking,
identification and blob analysis, centroid calculation, camera cali-
bration/orientation, photogrammetric intersection, and deformation
calculation. The structure of the custom software is shown in
Fig. 4.11. The software is used to acquire images, locate targets
and calculate their centroids, convert target centroids to spatial
coordinates in the object space, and compute deformation. Camera
calibration/orientation provides the interior and exterior orientation
parameters of a camera necessary for the solution of the collinearity
equations between the object space and the image plane.

For the VMD technique used in major NASA wind tunnels in
the past, standard analog video cameras and PC-based image
acquisition frame grabber boards were utilized. The standard RS-
170 video signal has an interlaced analog format, with a vertical
resolution of 240 pixel per field, and a horizontal resolution
determined by the frame grabber. Horizontal resolutions of 640
or 752 are commonly used. However, two fields are combined to
give a total vertical resolution of 480, with the added complica-
tion that adjacent rows in the final image may have been exposed
at different times. This potential problem (for dynamic situations)
can be avoided by using single video fields in the model-
deformation measurement process, but with reduced vertical
resolution. Progressive-scan cameras are non-interlaced and
may be more suitable for dynamic conditions.

The target-tracking implementation of the VMD technique
uses a double-buffer strategy for image acquisition and proces-
sing. At the completion of a single image acquisition, a new image
is stored in a second buffer at the same time the first buffer is
processed. Since the frame grabber board employs a bus-master-
ing PCI interface, the main processor of the host computer is free
Fig. 4.11. Flowchart of VMD data acquisition and processing.

Fig. 4.12. A step calibration target plate alig
to perform the processing even while a grab is in progress. On the
completion of each frame, the acquisition and processing operations
are switched between the two buffers. In the free-running mode, the
buffer-switching and processing operations are triggered automati-
cally by the end of a video frame through the use of callback
functions. The double-buffer method implemented in software
yields a throughput of 15 frames per second using standard video-
rate CCD cameras. With a high-speed progressive-scan CCD camera,
a system throughput of 60 images per second is possible.

Once a video frame has been acquired, targets must be identified
and located. This is done with a gray-scale centroid calculation to
sub-pixel resolution after subtracting an automatically determined
background level in the neighborhood of each target. The target
centroid ðx,yÞ is defined as x¼

PP
xiIðxi,yiÞ=

PP
Iðxi,yiÞ and y¼PP

yiIðxi,yiÞ=
PP

Iðxi,yiÞ, where I(xi,yi) is the gray level. While
target tracking, only regions in the image plane in the immediate
neighborhood of the targets are utilized, which reduces problems
associated with stray image features away from the tracking
regions.

Once target-tracking is initiated by the user, the system will
continuously track the position of the selected targets, returning a
live stream of target position data upon trigger. The size para-
meters and thresholds are maintained in real time for each target,
so the system is relatively insensitive to lighting changes that
may occur with changes in model attitude. Anomalies in target-
tracking may result from bright surface reflections which inter-
fere with a particular target in the image, high-speed model
motion which blurs the targets, or loss of image due to severe
lighting changes or obstruction in the viewing field. Target-
tracking is improved for such cases by memorizing the last ‘‘good’’
position of targets in the target-tracking process. Once tracking is
lost on a particular target, the system will recover the target
based on memory of the last known position of the lost target.
The memory-based target tracking technique has been imple-
mented and significantly enhances the robustness of the target-
tracking against the anomalies.

As discussed before, the analytical camera calibration/orienta-
tion techniques are used for the determination of the interior and
exterior orientation parameters and lens distortion parameters of
the camera/lens system. The optimization method (combined
with DLT for the initial values of the exterior orientation para-
meters) allows automatic camera calibration for the interior and
exterior orientation parameters and additional parameters for a
given 3D target field that is appropriately aligned with the tunnel
coordinate system (see Fig. 4.12). This feature particularly facil-
itates VMD measurements in large production wind tunnels due
to time constraints during videogrammetric setup and calibration.
ned with the tunnel coordinate system.



Fig. 4.14. Geometric illustration of the single-camera solution.

Fig. 4.15. Wing deformation at a spanwise location, where yon and yoff denote the

local pitch angles in wind-on and wind-off cases, respectively.
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The accurate determination of the interior orientation parameters
requires a target field filled in a larger portion of images.
However, in large wind tunnels, a target plate placed near a
tested model viewed by cameras mounted in windows on the
tunnel walls often occupies only a small portion of images. As a
result, the interior orientation parameters cannot be accurately
obtained. In this case, a two-step approach is suggested, in which
the interior and exterior orientation parameters are determined
separately. First, a target plate is placed near a camera to be
calibrated such that the target field fills up the image plane and
consequently the interior orientation parameters can be accu-
rately determined using the optimization method. It is assumed
that the interior orientation parameters are fixed as long as the
camera/lens setting is locked. Then, the target plate is placed in
the position near the tested model and aligned with the tunnel
coordinate system; the exterior orientation parameters are
obtained for the fixed interior orientation parameters. Fig. 4.13
shows preparation of camera orientation using a step calibration
target plate aligned with the tunnel coordinate system.

The data-reduction procedures for the VMD technique include
object-space coordinate calculations and deformation calcula-
tions. Once the target centroids are computed and the camera
orientation parameters are determined, the image-plane coordi-
nates (x,y) can be converted to object-space coordinates (X,Y,Z)
using the collinearity equations. A solution for (X,Y,Z) is not
possible using a single set of image coordinates (x,y) unless
additional information is available. In a single-camera VMD
system that has been used in NASA wind tunnels due to its
simplicity, the spanwise locations of the targets are usually fixed
to reduce the number of unknowns and to calculate the remain-
ing two coordinates. In other words, the collinearity equations
can be solved for (X,Y,Z) under a constraint Y¼const. (normally
the semispan coordinate). The geometric explanation of the
single-camera solution is illustrated in Fig. 4.14. The solution
(X,Y,Z) is the intersection point between the plane Y¼const. and a
line from the image point passing through the perspective center
of the lens. When the angle between the plane Y¼const. and
optical axis is zero, there is no unique solution. Therefore,
this angle must be large enough (typically larger than 201) to
Fig. 4.13. Preparation of camera orientation using a step calibration target plate

aligned with the tunnel coordinate system.
obtain a more accurate single-camera solution. The single-camera
approach works very well for pitch-only sweeps, where a stream-
wise row of the targets on a wing will basically remain at the
same spanwise location, but would fail or require additional
information for yaw sweeps. This method is also directly applic-
able to the angle-of-attack measurements and bending measure-
ments on high-lift systems. Although a multi-camera system
enables a more direct solution in more general cases, the single-
camera approach has an advantage in simplicity. For a two-
camera system, simultaneous images are acquired using two
video cameras viewing the same set of targets. Thus, for each
target, two sets of collinearity equations are sufficient to deter-
mine the spatial coordinates (X,Y,Z) based on two sets of
image coordinates (x,y) from the two cameras. The least-squares
method is used to solve the four equations for three unknown
coordinates (X,Y,Z).

Two methods are used to calculate twist and bending of a
wing. One is the linear fitting method used only for twist
calculation. The local angle-of-attack (AOA), defined as
y¼�tan�1(DZ/DX), is calculated by a linear fit to the target
coordinates in the (X,Z) plane at a given spanwise location, as
shown in Fig. 4.15. In the wind-tunnel coordinate system (X,Y,Z),
the X-axis is in the flow direction, the Z-axis is in the upward
direction on the wing surface, and the Y-axis is in the spanwise
direction following the right-hand rule. The local wing twist due
to aerodynamic load is defined as twist¼ytwist¼yon(Z)�yoff(Z),
where yon(Z) and yoff(Z) are the local AOAs in the wind-on and
wind-off cases at the normalized semi-span location Z. In prac-
tical wind tunnel tests, direct calculation is not applicable since
the model may not be at the same pitch angle in the wind-on and
wind-off cases. Thus, a correction method is used for twist
calculation. First, the angle difference Dy(yoff)¼yoff�aref in the
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wind-off case is fitted using a polynomial as a function of yoff,
where aref is the reference angle-of-attack and yoff is the local AOA
obtained by the VMD system in the wind-off case. The reference
aref could be the AOA readout from a wind tunnel system or other
reliable AOA data. The wind-on angular data at each semispan
station is corrected based on the wind-off calibration curve fits.
The corrected AOA (yon)corr in the wind-on case is calculated using
(yon)corr¼yon�Dy(yon). Finally, the wing twist is obtained using
the following relation twist¼ytwist¼(yon)corr�aref.

The 2D transformation method can be used to calculate both
wing twist and bending. Assuming that the cross-section of a
wing does not deform, a conformal transformation between the
wind-on and wind-off coordinates (Xon,Zon) and (Xoff,Zoff) is

Xon

Zon

 !
¼

cosytwist sinytwist

�sinytwist cosytwist

 !
Xoff

Zoff

 !
þ

Tx

Tz

 !
,

where Tx and Tz are the translations in the X- and Z-directions,
respectively. Given the coordinates (Xon, Zon) and (Xoff, Zoff) of a
number of targets, the twist ytwist and translations Tx and Tz can
be determined using the least-squares method. Wing bending is
bending¼Tz�(Tz)ref, where (Tz)ref is the reference Z-translation in
a reference location such as the fuselage.
4.3.2. Measurements of gossamer structures

Pappa et al. [83,84] described the eight steps in photogram-
metry measurements of gossamer structures using a typical
commercial software package, PhotoModeler Pro (Eos Systems,
Inc) for camera calibrations and data analyses. The following
steps that are typical in commercial photogrammetric software
include: calibrating cameras, planning measurements, taking
photographs, importing photographs into PhotoModeler, marking
target locations on each image, identifying referencing points in
images, processing data (bundle adjustment), and exporting 3D
coordinates to CAD program. The primary function of the soft-
ware is the processing of 2D image measurements of targets to
produce 3D object space coordinates of those same points
through multi-image photogrammetric triangulation. In many
cases the process can be used to simultaneously determine the
calibration of the camera(s) within the network either as a
primary task or as a secondary benefit. Most commercial software
packages either automatically or interactively guide the user
through a process of (1) loading the images, (2) marking the
targets, (3) referencing the marked targets on multiple images
and (4) processing.

The processing step itself is comprised of intermediate steps.
The first is known as exterior orientation, which essentially
establishes the relative positions of all images forming the net-
work within a specified 3D coordinate reference frame. This may
be accomplished via either photogrammetric ‘‘relative orienta-
tion’’ or via ‘‘spatial resection’’. Resection, which mathematically
computes the position and orientation of each camera position
with respect to the assigned coordinate system of the object, is
the most common approach since each image can be processed
separately. Conceptually, the second step, known as ‘‘spatial
intersection’’, uses the computed locations of each camera station
to determine the 3D location of a target point by intersecting the
imaging rays from all images containing that point. Thus, inter-
section can be performed point-by-point. Almost universally,
however, exterior orientation is refined and spatial intersection
performed simultaneously for all points in a multi-image ‘‘Bundle
Adjustment’’, which uses the principle of collinearity and incor-
porates an iterative least squares estimation process to compute
the final estimates of 3D target point coordinates and the spatial
position and orientation of each image.
The processing of video sequences for the purpose of tracking
dynamic motion is a relatively new feature now found in many
packages. The user can record an object with two or more video
cameras and then process the recorded video to track 3D motion
of the targeted object. In most cases the software has the ability to
process images in Tagged Image File Format (tif), Windows
Bitmap (bmp), JPEG (jpg) or Audio Video Interleave (avi) image
sequences. While static cameras allow shape measurement of
gossamer structures, the video systems allow low frequency
(typically less than 15 Hz) vibrations to be evaluated.

Typically, within the photogrammetry software the measure-
ment process is automatic with default settings governing the
solution. However, in those cases where the imagery may be less
than optimal the more experienced user can interactively modify
parameters to assist the process in reaching a desired solution.
Various statistics are often produced for each image as well as for
each target point in the solution as a byproduct of the process to
assist the user in evaluating the measurement.

The precision of the marked targets as well as that of the
derived 3D object point coordinate data is typically the most
important information. In most settings outside a laboratory, RMS
values for image coordinate residuals (effectively a measure of the
internal consistency of the multi-ray spatial intersections) of less
than 0.1 pixel are achievable if a good convergent design has been
implemented. In high-precision surveys of very stable objects,
this figure can be as low as 0.03 pixel. However, of ultimate
interest to the user is invariably the standard error for the XYZ

coordinate estimates for each target point.
In addition to statistical reports to aid in the evaluation of the

solution, 3D graphic representations similar to the point cloud
and camera station layout assist the user in evaluating the
measurement. As photogrammetry has become increasing more
popular in the industrial work place the requirement to export 3D
model data for use in external CAD, graphics, animation and
rendering packages is becoming a commonly requested feature in
the processing software. Several software packages offer simula-
tion utilities that aid in the determination of camera orientation
and principal distance, two factors that greatly influence target
identification when cameras are to be pre-positioned to measure
an object. Simulations provide the user the ability to pre-plan
measurement positions. The growing number of systems and
software tools available from manufacturers has significantly
improved the confidence of measurement systems specialists
seeking tools with photogrammetric capabilities.
5. Deformation measurements in wind tunnels

Aeroelastic deformation measurements have been made for a
number of tests in large production wind tunnels at NASA and
Arnold Engineering Development Center (AEDC) over the last 15
years. These facilities (some of which have been decommissioned)
are the National Transonic Facility (NTF), the Transonic Dynamics
Tunnel (TDT), the Unitary Plan Wind Tunnel (UPWT), 14�22 ft
Subsonic Tunnel and the 16-ft Transonic Tunnel (16 ft) at NASA
Langley, the 12-ft Pressure Tunnel at NASA Ames, and the 16-ft
Transonic Wind Tunnel at AEDC [9,19,20,21,23,25,43,99]. Photo-
grammetric measurements at the Vertical Spin Tunnel and
hypersonic wind tunnels are described by Barrows [4] and Jones
and Lunsford [58], respectively. The location of the data-recording
camera varies with the tunnel due to window location con-
straints, competition with other instrumentation for viewing
ports, and ease of mounting. VMD measurements on sting-
mounted horizontal models have been made at the NTF, UPWT,
16-ft, and TDT. VMD measurements have been made on wall
mounted semi-span models at the NTF and TDT. Measurements
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have been made on floor mounted semispan and bipod supported
full models at the Langley 14�22 ft Tunnel and the Ames 12-ft
Tunnel. Photogrammetric measurements of model attitude and
position have been made at AEDC 16-ft Transonic Tunnel by using
eight PSP cameras to integrate PSP and photogrammetric mea-
surements [93,94].

5.1. National Transonic Facility

The National Transonic Facility (NTF) is a fan-driven, closed
circuit, continuous-flow pressurized wind tunnel with an
8.2�8.2�25-ft long test section and a slotted-wall configuration.
The wind tunnel can operate in an elevated temperature mode up
to T¼140 1F, normally using air, and in a cryogenic mode, using
liquid nitrogen as a coolant, to obtain a test temperature range
down to about �250 1F. The design total pressure range for the
NTF is from 15 psia to 130 psia. The Mach number and total
pressure are varied to give the desired dynamic pressure. The
combination of pressure and cold test gas can provide a range of
Mach numbers from 0.1 to 1.2 and Reynolds numbers of 4�106

to 145�106 ft�1. These characteristics afford full-scale Reynolds
number testing for a wide range of aircraft. A major instrumenta-
tion challenge at the NTF is the requirement to make measure-
ments over the wide range of temperature from 140 1F down to
�250 1F. Aeroelastic deformation measurements have been made
on a variety of different models at the NTF including High Speed
Research (HSR) [19], Advanced Subsonic Technology (AST) models
[53], commercial aircraft, Blended Wing Bodies (BWB), and Check
Standards models [4]. Fig. 5.1 shows typical wing twist of a HSR
model at different dynamic pressures for Z¼0.922. More recent
measurements of wing deformation of the DLR-F6 transport
configuration were conducted in NTF [28].

5.2. Transonic Dynamics Tunnel

The Langley transonic dynamics tunnel (TDT) is best known for
aeroelastic research and flutter-clearance and other aeroelastic-
verification tests of fixed-wing and rotary-wing flight vehicles
and launch vehicles. The TDT is a continuous-flow, variable-
pressure wind tunnel with a 16-ft by 16-ft test section. The
tunnel uses either air or a heavy gas as the test medium and can
operate at Mach numbers up to 1.2 while obtaining Reynolds
numbers of approximately 3�106 ft�1 in air and 10�106 ft�1 in
R-134a gas.
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Fig. 5.1. Typical wing twist of a HSR model at varying dynamic pressures for

Z¼0.922. Measurements were carried out in NTF at NASA Langley.
The first automated videogrammetric measurements of wing
twist and bending at NASA Langley were made at the TDT in 1994
where the application of high contrast targets on the wing made
possible the use of image processing techniques to automatically
determine the image coordinates of the targets. Image sequences
up to 8 s long at a 60 Hz rate per data point have been taken for
dynamic studies. Videogrammetry has been used at the TDT for a
number of tests of semispan models, both rigid and flexible, and
full models [50,103,4]. Measurements have been made on the
DARPA/Wright Labs/Northrop Grumman Smart Wing that had
variable twist and adaptive control surfaces to provide continuous
wing contour and variable camber [42]. Tests were first con-
ducted on a conventional wing model without smart structures
for comparison to the Smart Wing and to validate the model
deformation system. The system was used to determine the
trailing edge deflection angles of the Smart Wing that were
embedded with shape memory alloy (SMA). This example is
described in Section 7.1. The system was also used to measure
model wing twist when the SMA torque tubes were activated.
Measurements were obtained that provided near real time model
control surface deflections and twist. The relevance of the model
deformation at TDT, up to this point, was very well received by
the tunnel researchers which led to the development of an
enhanced wind tunnel specific VMD system [51]. Applications of
this VMD at TDT, as well as NTF, were included in nearly every
wind tunnel Test for over a decade. Some high visible testing at
TDT, which included VMD, involved NASA, DARPA, Air Force, and
industry funded Programs. Of these were the High Lift-to-Drag
(HiLDA) Flight Program, Aerodynamic Efficiency Improvements
(AEI) Program, F/A-18 Active Aeroelastic Wing (AAW) research
aircraft Program, and a Morphing Wing Program. All of these
programs were unique, by their own rights, and required special
attention to details when setting up for the VMD.

5.3. Unitary Plan Wind Tunnel

The Langley unitary plan wind tunnel (UPWT) is a closed
circuit, continuous-flow, variable-density tunnel with two 4-ft by
4-ft by 7-ft test sections. One test section has a design Mach
number range from 1.5 to 2.9, and the other has a Mach number
range from 2.3 to 4.6. The tunnel has sliding-block-type nozzles
that allow continuous variation in Mach number while the facility
is in operation. The maximum Reynolds number per foot varies
from 6�106 to 11�106, depending on Mach number. A VMD
measurement system has been used at UPWT for aeroelastic
studies to assess Mach number and Reynolds number effects in
addition to comparisons of models with flapped and solid wings.
For example, data for the aerodynamically induced wing twist
and bending of an HSR NCV model near the wing tip (Z¼0.992)
for Reynolds number sweeps at Mach¼2.4 are plotted in Fig. 5.2.
Reynolds number variations were obtained by changing the
dynamic pressure, thus the plot in Fig. 5.2 reflects the dynamic
pressure effect on the change in aeroelastic wing twist. The
maximum wing twist of �1.251 at Mach 2.4 occurs at a Reynolds
number of 4.9�106. The nearly linear change in twist and
displacement as a function of alpha has been observed for a
number of HSR models.

5.4. Rotor blades in Ames 40-by-80-ft Wind Tunnel

Blade deformation measurements were conducted by Barrows
et al. [6] on the full-scale UH-60A helicopter airloads rotor in the
40-by-80-ft wind tunnel of the National Full-Scale Aerodynamics
Complex at NASA Ames Research Center. Multi-camera photo-
grammetry was used to measure the blade deformation of the
four-bladed rotor in a range of advance ratios and thrusts, and
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Fig. 5.2. Typical wing twist and vertical displacement of a HSR NCV model at

different dynamic pressures for Z¼0.922. Measurements were carried out in

UPWT at NASA Langley.

Fig. 5.3. Schematic showing the floor cavity locations in which digital cameras

and strobes are installed.

Fig. 5.4. Rotor blades with 2-in diameter retro-reflective targets and 6-in

diameter targets installed onto the test-section ceiling for camera orientation.
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rotor shaft angles. Fig. 5.3 is a schematic showing the floor cavity
locations in which digital cameras and strobes are installed. The
eight cameras positioned around the model were placed below
the blades and looking up to optimize viewing of the retro-
reflective blade targets. As shown in Fig. 5.4, the lower surface of
each rotor blade was targeted with 48, 2-in diameter retro-
reflective targets, three per radial station, uniformly spaced at
approximately 0.05 blade radius intervals between the blade cuff
and blade tip. In addition, 84 6-in diameter targets were installed
onto the test-section ceiling in order to determine the exterior
orientation parameters of the cameras. Target illumination was
provided by xenon flash-lamp 50 mJ strobes with pulse duration
of 10 ms. Fiber optic bundles positioned as near as possible to the
optical axes of each camera lens routed the light from each strobe
to illuminate the targets and maximize the light return from the
blade and ceiling retro-reflective targets.

After all eight cameras are firmly anchored into their final
positions in the test section, camera calibration/orientation are used
to determine the exterior orientation parameters of each camera
relative to the test section as well as distortion coefficients through-
out testing. The constellation of 84 6-in diameter retro-reflective
targets distributed over the test-section ceiling was used for
calibration/orientation. The locations of the ceiling targets relative
to the test section are determined using a commercial photogram-
metry measurement system, V-STARS, developed by Geodetic Sys-
tems Inc. The ceiling mappings that were obtained without flow
provided target locations with a standard deviation of 0.04 in. This is
a good example to demonstrate how to calibrate and orient cameras
in a large measurement domain based on a large calibration target
field (ceiling targets) measured using a mature commercial
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photogrammetry measurement system like V-STARS. Then, the
sequences of images are processed to calculate accurate centroid
locations of discrete targets on the rotor blades, rotor instrumenta-
tion hat, and test section ceiling. A suite of custom designed image
processing and data reduction functions were developed for this
effort using the Matlab software environment. Supporting functions
for image processing, photogrammetry, and coordinate transforma-
tions are provided via a custom Matlab Photogrammetry Toolbox
developed by Western Michigan University (WMU) for NASA [72]..
The WMU Toolbox, in conjunction with Mathworkss Matlab Image
Processing and Statistics Toolboxes, are integrated into a NASA
rotor-specific toolbox suite of functions. The NASA Rotor Toolbox
makes use of moderately automated post-test image processing
procedures that identify BD targets and calculates the image plane
centroid spatial coordinates for each. Fig. 5.5 shows typical pitch
angles over the full azimuth. Fig. 5.6 shows aeroelastic blade
bending of the blade 1 at the azimuth angle of 1501.

5.5. Other measurements

Micro-air-vehicles (MAV) usually have wings with a flexible
surface and a frame. To characterize the deformation of the
flexible wings and its effect on aerodynamics, photogrammetric
techniques have been used to measure the coordinates of targets
Fig. 5.5. Typical pitch angles over the full azimuth.

Fig. 5.6. Aeroelastic blade bending for Blade 1 at the azimuth angle of 1501.
distributed on the wing surface as a function of time in wind
tunnel testing [87,75,13,54]. In these experiments, three cameras
were used for imaging and the commercial software PhotoMo-
deler 6 was used for data processing. Further, to study flapping
flight such as bird-like MAV, photogrammetric techniques are
particularly desirable to measure the wing kinematics [35]. The
complex wing kinematics of a flapping wing of a bat in a wind
tunnel was measured by Tian et al. [104] using two high-speed
cameras. Recently, Carruthers et al. [30] used six cameras posi-
tioned around a measurement volume through which an eagle
flew as it approached an elevated perch to capture images of the
eagle. The eagle’s wing surface in flight was reconstructed via
photogrammetry. Shapes and dynamics of flexible structures such
as parachute canopy and the Orion Crew Exploration Vehicle
airbag landing attenuation systems have been measured using
photogrammetry by Jones et al. [59] and Barrows et al. [5],
respectively. Photogrammetric recession measurements of abla-
tive materials are reported by Schairer and Heincek [100] and
Callaway et al. [29].
6. Measurement uncertainty

Burner et al. [26] gives an uncertainty analysis of photogram-
metric (videogrammetric) techniques used for the measurement
of static aeroelastic wind tunnel model deformation and wind
tunnel model AoA. Sensitivity analyses and geometrical consid-
erations of uncertainty are augmented by analyses of experimen-
tal data in which videogrammetric angle measurements were
taken simultaneously with precision servo accelerometers
corrected for dynamics. Experimental comparisons with a high-
accuracy indexing table were presented. It was shown experi-
mentally that, provided the proper constraints necessary for a
solution are met, a single-camera solution can be comparable to a
two-camera intersection result.
6.1. Sensitivity analysis

In order to obtain (X, Y, Z) from the image coordinates (x, y),
one can use the single-camera approach in which the collinearity
equations are solved for (X, Y, Z) under a constraint of fixed
spanwise location (Y¼const.). The single-camera approach is
simple, but particularly useful for wind tunnel testing where
optical access is very restricted. The two-camera or multi-camera
approach simultaneously acquires images and the spatial coordi-
nates (X, Y, Z) are determined from two sets of the image
coordinates (x, y). The total uncertainty of metric measurements
of (X, Y, Z) is described by the error propagation equation. For
simplicity of expression, when (X, Y, Z) is replaced by the index
notation (X1, X2, X3), the error propagation equation for the total
uncertainty in the coordinate Xk is given by

varðXkÞ

X2
k

¼
XM

i,j ¼ 1

SkiSkjrij

½varðziÞvarðzjÞ�
1=2

zizj
, ð6:1Þ

where rij ¼ covðzizjÞ=½varðziÞvarðzjÞ�
1=2 is the correlation coefficient

between the variables zi and zj, varðziÞ ¼/Dzi
2S and covðzizjÞ ¼

/DziDzjS are the variance and covariance, respectively, and the
notation /S denotes the statistical assemble average. Here the
variables {zi,i¼1yM} denote a set of the parameters (o, f, k, Xc,
Yc, Zc), (c, xp, yp), (K1, K2, P1, P2), and (x,y). The sensitivity coefficients
Ski are defined Ski¼(zi/Xk)(@Xk /@zi ). Typically the sensitivity analysis
of (X1, X2 , X3) to these parameters is made for both the single-
camera solution and two-camera solution under the assumption
that the cross-correlations are zero.
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In wind tunnel testing, the local AoA is usually measured to
determine the attitude of a model and wing twist. In a right-hand
tunnel coordinate system where X is in the freestream direction, Y

is in the spanwise direction and Z is in the upward direction,
using two targets placed along the freestream direction on the
model, the local AoA is given by

y¼ tan�1 Zð2Þ�Zð1Þ
Xð2Þ�Xð1Þ

� �
¼ tan�1 DZ

DX

� �
: ð6:2Þ

For more targets, a least-squares method is used to calculate
the local AoA. The variance of the local AoA (y) is given by

varyÞ
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where the sensitivity coefficients are
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In order to illustrate the sensitivity analysis, we consider a single-
camera system in NTF, where the exterior parameters are (o,
f,k,Xc,Yc,Zc)¼(61.61,0.21,�90.81,0.1 in,�55.2 in,34.5 in), the interior
parameters are (c,xp,yp)¼(26.3,�0.23,0.33) in mm, the lens distortion
parameters are (K1, K2, P1, P2)¼(5.96�10�4, 4.17�10�5, �3.72�
10�4, 4.98�10�4), and the pixel spacing ratio is Sh/Sv¼0.422. For
measurement of the local AoA, two targets are placed along the same
spanwise location on a wing at (X, Y, Z)¼(1, 20, 5) in and (X, Y, Z)¼(2,
20, 4.5) in. For given errors (dx, dy)¼(0.05, 0.05) pixel in the mea-
surement of the target centroids, the total uncertainty dy in the local
AoA is estimated in several situations.

Fig. 6.1 shows a schematic of the wind tunnel coordinate system
and the typical position of a camera. As shown in Fig. 6.2(a), when the
camera moves up along the Z-direction while the camera principal
distance c remains invariant, the angular uncertainty dy increases
with Zc since not only the distance of the camera from the targets
increases, but also the angle o decreases. When the camera moves
from the position 1 to position 2, the camera principal distance c can
be adjusted to keep the image scale constant, maintaining a fixed
distance between the two targets used for the simulation. Thus, the
camera principal distance c2 at the position 2 is given by c2¼c1R2/R1,
where c1 is camera principal distance at the position 1, and R1 and R2

are the distances between the targets and the camera at the positions
1 and 2, respectively. As shown in Fig. 6.2(a), the angular uncertainty
dy is reduced by compensating the camera principal distance at
different positions.

Another case of interest is when the camera moves along the
flow direction (X-direction). Fig. 6.2(b) shows the angular uncer-
tainty dy as a function of Xc with and without compensation of
the camera principal distance c. Note the uncertainty in angle is
only weakly dependent on the location of the camera in the
Fig. 6.1. Sketch of coordinate system and motion of camera for first case.
X-direction, changing by less than 0.021 over a range of 20 in.
Fig. 6.2(c) shows the angular uncertainty dy as a function of o as
the camera moves around the model. Fig. 6.2(d)–(g) show the
angular uncertainty dy as a function of f, k, xp and K1. In the
single-camera solution, it is assumed that the spanwise location Y

of the targets is a given constant. However, in actual measure-
ments, the given spanwise location Y of the targets may not be
accurate. When there is an error in the given location Y, errors
occur in the calculated X and Z. The angular uncertainty dy is
plotted in Fig. 6.3 as a function of error dY for different values of
o. Note that the angular error caused by dY can be partly thought
of as a bias error that is largely reduced by zeroing. In addition a
systematic error that is produced by dY and that varies as a
function of the angle can be lessened considerably by the use of
reference polars to calibrate the videogrammetric system in terms
of known angles at each semispan station target row.

6.2. Target centroiding uncertainty

The uncertainty of the videogrammtric technique is related to the
uncertainties in target centroid measurements, camera calibration,
and data-reduction (calculations of the coordinates, twist and bend-
ing). The uncertainty in target centroid measurement is associated
with camera noise, centroid calculation schemes, target size, and
spatial quantization of a CCD sensor. The random errors associated
with the camera noise can be collectively represented by the centroid
variations for spatially fixed targets. Statistics of the target centroid
variations have been measured using a standard video-rate CCD
camera with a 75 mm lens viewing an array of 1/4-in. diameter
circular targets. Fig. 6.4 shows typical histograms of the centroid
variations in the horizontal (x) and vertical (y) coordinates on the
image plane, where the standard deviations of the centroid variations
in the x- and y-directions in images are 0.0081 and 0.0043 pixel,
respectively, for the CCD camera with a format of 640�480 pixel.
The centroid uncertainties limit the accuracy of videogrammtric
measurements in the object space. When the image plane is
approximately parallel to the (X, Y) plane in the object space,
estimates of the limiting uncertainties in the spatial coordinates
associated with the centroid random variations are ðd X=LXÞmin

¼ 0:0081=640¼ 1:3� 10�5 and ðd Y=LY Þmin ¼ 0:0043=480¼ 0:9�
10�5. For example, when the characteristic lengths in the object
space are LX¼7 in and LY¼9 in, the corresponding measured length
differences are ðd XÞmin¼182 min and ðd YÞmin¼162 min.

A bias error occurs in the centroid calculation due to perspective
imaging and lens distortion since the center of the target image does
not coincide with the geometrical center of the target [62]. This
deviation may be as large as 0.3% of the target diameter and is
dependent on the viewing angle of the camera, target size, sensor
size, and focal length. Another error in centroid calculation is sensor
quantization, which is inversely proportional to the square root of
the number of pixels in the target image. Note that this potential
error source indicates larger targets are desirable, whereas the error
discussed by Lenz and Fritsch [62] would indicate a need for small
targets. Experimentally it has been found that a target pixel
diameter of no smaller than around 5 pixel is a good compromise.
It is typically better to use targets that are somewhat larger than the
recommended 5 pixel diameter for initial lens setup rather than
smaller. The larger target sizes may help to compensate for possible
unknown image scale during further lens changes that may be
necessary to accommodate the test object motion, for instance, pitch
angle changes during testing.

6.3. Reference polar analysis

Reference polars of wind tunnel models can be used to
periodically to calibrate the videogrammetric measurement



Fig. 6.2. Sensitivities of the uncertainty in angle to the parameters (a) Zc, (b) Xc, (c) o, (d) f, (e) k, (f) xp, and (g) K1.

T. Liu et al. / Progress in Aerospace Sciences 54 (2012) 1–5824
system in terms of the onboard accelerometer used for precision
pitch angle measurements. An example of the angular change in
zero-shift over 2.5 months at the National Transonic Facility is
plotted in Fig. 6.5 as a function of run set number. These 25 data
sets contain over 3500 data points. The data is plotted for each of
the 6 semispan stations where deformation data were acquired.



Fig. 6.3. Uncertainty in angle as a function of error in Yref.
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Fig. 6.5. Change in zero-shift as a function of run set number over 2.5 months for

(a) inboard semispan stations, and (b) outboard semispan stations.
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The inboard station at Z¼�0.05 was used to remove angular
sting bending and any bias error common to all the semispan
stations. The relatively large change in zero-shift evident at
Z¼0.77 and 0.92 occurred due to a part change with correspond-
ing new targets at different local angles. Two targets were present
at each semispan station Z. Target spacing varies from 6 in at
Z¼�0.05 to less than 2 in at Z¼0.99. Although the change in
zero-shift inboard is less than 0.11 throughout the 2.5 month test,
changes in zero-shift near the tip approached 11. The angular
changes in zero-shift at the various Z stations at different total
temperature and total pressure indicate that there is no dramatic
correlation with temperature or pressure. Thermal expansion and
contraction of the test section that may lead to a non-repeatable
orientation in pitch of the video CCD camera may not necessarily
be the cause of the zero-shift since that type of orientation change
should be observed at all semispan stations (especially for
Z¼�0.05 and Z¼0.35) which is not reflected in the data plots.
The values of zero-shift and slope change of the videogrammetric
calibration data should be compared to precision servo-acceler-
ometers, which typically have a zero-shift of less than 0.011 and a
slope change (at a¼61) of 0.0011 or less over several months.
Fig. 6.5 illustrates the value of periodic zero shift compensation.
At the NTF it is common practice to bracket wind-off calibration
polars around each wind-on data set at a particular test tempera-
ture in order to compensate for zero and slope changes over time.



Fig. 6.7. One-camera solution of Camera 1 with roll angles of 01, 721, 741.

Fig. 6.8. One-camera solution of Camera 2 with roll angles of 01, 721, 741.
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6.4. Single-camera vs. two-camera

Static angle measurements were conducted in a laboratory to
compare the single camera solution and two-camera solution. A
two-camera measurement system [66] was used for these tests.
Individual camera centroids from the two-camera measurement
system were used to compute two sets of single-camera angular
results to compare to a single set of two-camera results. A high-
accuracy indexing table, which has been calibrated to achieve an
accuracy better than 0.00031, was used as the standard for
comparison. The pitch angle was varied over a range of –101 to
301 in 11 increments. A second indexing table was used to
introduce roll angles of 01, 721, and 741 to assess the effect of
an unknown roll on the angle data. No correction was made for
the roll to simulate the case for wind tunnel models where an
unknown roll may be present. Small roll angles are seen to
introduce a zero-shift in the measured values. The two-camera
measurement results are presented in Fig. 6.6. For this figure and
the following two plots, the known set angle is subtracted, leaving
the angular error compared to the known standard. Figs. 6.7 and
6.8 show the single-camera measurement results for the image
data from the same two cameras as used to acquire the
two-camera intersection results. Note the similarity of the two-
camera solution and one-camera solution from Camera 1. The
one-camera solution from Camera 2 is somewhat better than the
results either using Camera 1 or using both cameras. These results
suggest that if the constraints of the single camera solution are
met, angular measurements with a single camera can be compar-
able to two-camera intersection.

It is emphasized that the assumption in the single-camera
solution is that the Y coordinates of the targets are invariant in
wing bending. However, wing bending causes the Y coordinate of
wing targets to decrease (moving toward the body) which causes
a bias error in the computation of X and Z in the single-camera
solution if it is not properly accounted for. Consider the case for
simple beam bending given by DZ¼c1Y2

þc2Y3, where c1 and c2

are constants. An arc length computation can be used to estimate
the amount of shift as a function of Y. For the case of a single
beam bending, an estimate is DY � ð2=3Þ c1

2ðY�YoÞ
3, where Yo is

the semispan location at which deflection starts. For example, if
(Y�Yo)¼30 in at Z¼1 with a tip deflection of 1 in, then
DYE0.022 in. In other words, the correct Y to use for the
deflected tip target should be less by this DY. A partial correction
for this effect can be implemented by first calculating the X and Z
Fig. 6.6. Two-camera intersection with roll angles of 01, 721, 741.
coordinates without correction for DY, then determine a first
estimate of c1 to get an estimate of the correction DY before re-
computing X and Z with the single-camera solution. One or two
iterations should be sufficient for typical applications.
7. Special measurements in ground facilities and flight

7.1. Smart Wing deformation at Langley TDT

The single-camera videogrammetric model deformation
(VMD) technique was used during all four Smart Wing entries
in the NASA LaRC TDT to obtain deformation measurements [44].
For the first three tests, the measurements were made at three
spanwise locations along the main body of the ‘‘smart’’ wing and
at spanwise locations on the ‘‘smart’’ control surface. For the first
full-span model entry, measurements were also made on the
conventional flap and aileron [42]. The final Smart Wing test in
this series of 4 acquired VMD data at only two spanwise locations
on the ‘‘smart’’ control surface, and it was the first facility test in
which an enhanced model deformation measurement system [51]



Fig. 7.3. Close-up photograph of the retro-reflective targets on the lower side of

the control surface on the right/smart wing.
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was used as a primary measurement system. This system was
designed to enhance robustness, accuracy, adaptability and ease
of use for facility operations personnel. For the final Smart Wing
test, the VMD system was operated in an automated, full frame
mode at 60 Hz and acquired over 2000 data points without a
major malfunction.

Retro-reflective tape targets were used during all Smart Wing
tests to ensure high-contrast imagery. The tape targets are 4 mil
(0.004-in) thick. When a light source is positioned near the
camera, the light retro-reflected from the tape targets can result
in high-contrast images in which the targets are easily discrimi-
nated from the background. Such high-contrast images are
amenable to automated image processing. For the final Smart
Wing test, the hingeless control surface consisted of ten indepen-
dently controlled segments that were used to produce various
control surface shapes. Ten 0.5-in diameter retro-reflective tape
targets were placed equally-spaced and centered on the lower
surface of two of those segments (segments 3 and 6, shown in
Fig. 7.1). There were five targets per segment, with one target of
each segment row positioned on the main wing element side of
the virtual hingeline (i.e., where a hingeline would be for a
conventional control surface) of the ‘‘smart’’ control surface to
serve as a reference point. The targets can be seen on the left side
of Fig. 7.2. (Other targets visible on the figure were used in the
first Phase 2 test.) A more detailed image of the targets on the
control surface is shown in Fig. 7.3.

In-tunnel calibration of the VMD system was accomplished
using a calibration fixture (a three-step plate). This fixture, which
consists of an array of targets with known spatial coordinates,
was initially used to determine lens distortion and principal
distance, as well as to determine the orientation of the camera
in the desired coordinate system. For this phase of the calibration,
the fixture was placed to fill the field-of-view of the camera for
Fig. 7.1. Photograph of the ‘‘smart’’ trailing-edge control surface highlighting the

segments monitored by VMD.

Fig. 7.2. Photograph of the lower surface of the model showing the VMD retro-

reflective tape targets on the control surface of the ‘‘smart’’ wing.

Fig. 7.4. Photograph of the VMD calibration plate/fixture mounted underneath the

right ‘‘smart’’ wing.
the distortion computations and was not necessarily aligned to
the model. Once the measurement system was set up with the
proper view of the model, the calibration fixture was aligned to
the control surface of the right ’’smart’’ wing (Fig. 7.4) in order to
determine the exterior orientation parameters of the camera via
photogrammetric space resection. For typical VMD applications
where the deformation of the main wing element is the primary
interest, the X-axis is aligned along the flow direction, the Y-axis
is aligned along the span, and the Z-axis is up. However, for the
final Smart Wing test in which the primary interest was the
deformation of the control surface, the Y-axis of the calibration
fixture was aligned with the virtual hingeline of the control
surface with the model pitched to an angle of attack (AoA) of
1.61. The X-axis of the orthogonal coordinate system was thus
perpendicular to the hingeline at that angle. Consequently, the
computed Z-coordinates for the targets were only calibrated
strictly at model AoAs of 1.61. At other model AoAs, the
Z-coordinates would need additional corrections determined as
a function of those angles.

After calibration, the VMD measurement process begins with
the acquisition and digitization of a live video stream, which for
the final Smart Wing test was automatically triggered by the
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facility Data Acquisition System (DAS) at 60 Hz for 2 s as each
data point was acquired. Once that video sequence was recorded,
a blob analysis was used for target detection in the image. A gray-
scale centroid calculation with the background level automati-
cally removed provided sub-pixel precision. Single-view photo-
grammetry was used to determine the X (perpendicular to the
control surface virtual hingeline) and Z coordinates (vertical) in
the object space, given the known Y coordinates (parallel to
control surface hingeline).

During the test, both static and dynamic time histories (2-s
records at 60 Hz) of the shapes of segments 3 and 6 were
automatically acquired and reduced. A typical plot of mean Z

versus mean X of the control surface is presented in Fig. 7.5 for
five different control surface deflections acquired at M¼0.6,
q¼150 psf, and AoA¼1.61, where M denotes Mach number and
q is the dynamic pressure. This data represents the profiles of the
lower surfaces of segments 3 and 6 of the ‘‘smart’’ control surface
sampled at the five target locations on each. The DX separation of
the targets on the main wing element associated with each
segment to the target nearest the trailing edge of the control
surface is around 5.5 in. The standard deviations of the 60
samples used to compute the means of Z for these targets are
typically around 0.01 in.

Since the surfaces are curved as they deflect, any single angle
used to describe the deflection of each segment is dependent on
how the angle is defined and will not truly capture the external
shape. Thus, instead of angular resolution, VMD accuracy will be
discussed in terms of the short-term (back-to-back repeat data
points) and within-run precision of the coordinate Z describing
the contour of the lower surface. The difference, DZ, in mean Z

between two repeat data points (separated by 45 s and acquired
at M¼0.6, q¼150 psf, and AoA¼�2.41) serves as an indicator of
short-term repeatability. For these points, the short-term repeat-
ability was generally better than 0.5 mil (0.0005 in) with a worst-
case difference of 0.6 mil (0.0006 in). The standard deviation of 60
samples of Z taken over two seconds for an entire AoA-polar was
less than 12 mil with a typical value less than 10 mil.

Wind-off bench tests performed prior to the final Smart Wing
test indicated that a target placed on the main wing element near
the virtual hingeline would remain essentially stationary during
deflections of the control surface. This wind-off behavior was
confirmed during the wind-tunnel entry and is demonstrated in
Fig. 7.5. Typical VMD plot layout showing five different control surface deflec-

tions acquired at M¼0.8, q¼150 psf, and AoA¼1.61.
Fig. 7.6, where the X and Z coordinates of segments 3 and 6 are
plotted for uniform control surface deflections ranging from �141
to 201 with AoA fixed at –0.41. Analysis showed that the standard
deviations for the wing element targets in this data set were
0.8 mil and 2.9 mil for segments 3 and 6, respectively. The
maximum Z-displacements for those two targets were 2.4 mil
and 8.5 mil, respectively. However, wind-on VMD measurements
did not observe the same main wing target stability. This is
evident for the wind-on data presented in Fig. 7.5, where the
movement of the two wing targets is up to 0.4 in. This motion was
nearly 100 times greater than was seen in the wind-off case, and
analysis showed that the motion was also over 300 times the
standard deviation of mean wind-on repeat data, indicating a real
effect.

Analysis of the VMD data for the wind-on conditions also
revealed that both the main wing target and the target on the
control surface segment nearest the virtual hingeline consistently
had Z-deflections of the opposite sign from the remaining three
targets nearer the control surface trailing edge for both segments.
In the wind-off case, the control surface targets all demonstrated
same sign deflections, with the wing target remaining almost
stationary as previously discussed. These wind-on effects are
most likely due to a combination of flow-induced wing twist
and local reaction of the main wing element to the control surface
actuation. These aerodynamic and aeroelastic effects could not be
measured with traditional onboard gages alone, such as the rotary
potentiometers used during the final Smart Wing test. This
illustrates the value of both independent remote optical measure-
ments and the acquisition of extensive wind-off data. To better
emphasize the lower surface profiles, the VMD surface contour
plots shown here have been normalized by zeroing the main wing
element Z-coordinate. Fig. 7.7, for example, shows the normalized
data plots corresponding to Fig. 7.5, respectively. The change in
the profiles as the surfaces are deflected is clearly evident.

As previously mentioned, quantifying an angular value for the
deflection of a contoured surface depends on how that angle is
defined. The onboard rotary potentiometer angles were deter-
mined via a wind-off calibration using a 2-point arctangent
computation in (X, Z) control surface centerline coordinates of
the hingeline and the trailing edge. For comparison purposes, the
videogrammetric angles were determined by four different meth-
ods for a wind-off control surface deflection sweep of –151 to 201
Fig. 7.6. Coordinates as smart control surface segments were deflected uniformly

from �141 to 201 in the wind-off case at AoA¼�0.41.



Fig. 7.7. Data plot corresponding to Fig. 7.5 with Z coordinates normalized by the

main wing target Z values.

Fig. 7.8. VMD angles versus angles from onboard potentiometers for the wind-off

uniform smart control surface deflections at AoA¼�0.41.
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at AoA¼�0.41, with sign chosen to make trailing-edge down
positive. Two of the methods consisted of 2-point arctangent
computations in the (X, Z) coordinates using (1) the trailing-edge
and main wing element targets and (2) the trailing-edge target
and target nearest the hingeline, but still on the movable flap. The
other two methods consisted of linear least squares fits to (3) all
the targets and (4) all targets except the main wing element
target. The resulting videogrammetric angles are plotted against
the corresponding potentiometer angles in Fig. 7.8. Methods
(1) and (3) yield very similar results, as do methods (2) and (4).

Note that there is a negative bias of about 81 for the VMD
angles since they were measured from targets on the lower
surface, which has a negative inclination to the control surface
centerline used by the potentiometers. Compared to the potenti-
ometer data, methods (1) and (3) tend to underestimate the flap
segment angle by about 6% to 11%, whereas methods (2) and
(4) tend to overestimate by about 13%. However, due to the high
precision of the videogrammetric data, calibration based on the
potentiometers at a given AoA is possible. A fifth-order fit to the
data yields residuals with a standard deviation of 0.111 and 0.081
for segments 3 and 6, respectively. In most cases, the residuals
based on the four methods are equal to within 0.011, with worst-
case agreement of 0.021. Thus the four methods are essentially
equivalent after calibration. The maximum deviations of the
residuals after calibration are 0.31 and 0.21 for segments 3 and
6, respectively. Thus the videogrammetric data can be calibrated
to within several tenths of a degree if a single parameter (such as
segment deflection angle as defined by the potentiometers) is
desired to describe the flap deflection at each segment. Note that
the linearity and repeatability specifications of the rotary poten-
tiometers are 0.1% and 0.01% of full scale (3401), or 0.341 and
0.0341, respectively. Thus it is expected that a large fraction of the
residuals may be due to inaccuracies in the potentiometers. Since
the repeatability of the videogrammetric data is around several
hundredths of a degree, it is possible to calibrate to those levels at
specific AoAs and control surface settings.

7.2. In-flight aeroelastic deformation

A low-cost, adaptable videogrammetric method was devel-
oped for the measurement of static and dynamical aeroelastic
deformation of aircraft wings during flight testing [27]. The
method was adapted from a proven technique used in wind
tunnel testing. Measurements included the change in wing twist
and deflection as a function of time of an F/A-18 research aircraft
at NASA’s Dryden Flight Research Center (DFRC). The Active
Aeroelastic Wing (AAW) F/A-18 research aircraft at DFRC is
shown in Fig. 7.9. The camera pod housing the Flight Deflection
Measurement System (FDMS) and video camera can be seen on
the top of the fuselage overlooking the left wing. The camera pod
as viewed from the right side of the aircraft is shown in Fig. 7.9,
with a close-up of the camera pod highlighting the FDMS and
video camera viewports also depicted in Fig. 7.9. A planform of
the aircraft showing the locations of the video camera, FDMS
receivers, and FDMS targets (indicated with red circles) is shown
in Fig. 7.9. The AAW F/A-18 project envisioned the application of
in-flight structural deflection measurement from its earliest
formation. Provisions were designed in the test aircraft to accom-
modate the FDMS. This included a dorsally mounted receiver pod
with window, 16 infrared LED targets on the upper left-hand wing
surface with lead wires to a target driver box, a control unit box,
power supplies, data telemetry interface circuit, and a cockpit-
mounted on/off switch. As the FDMS installation was being
designed, additional provisions were built in to support a devel-
opmental deflection measurement system. These provisions
include additional space in the FDMS receiver pod and a longer
window. Additionally, a pod heater was provided. These addi-
tional provisions made the AAW aircraft an ideal test-bed for the
flight testing of new deflection measurement approaches.

There are several notable differences between measuring wing
deformation of a wind tunnel model compared with an aircraft in
flight. For instance, the in-flight data camera would likely be
mounted on the fuselage of the aircraft, thus the view presented
to the data camera would be essentially the same throughout
testing (except of course for any deformation or scale changes due
to varying refractive index). The measurement of wing deforma-
tion in flight is closer to a differential measurement, can make
better use of the available image area, and is affected less by rigid
body motion because the camera is on the body (fuselage).
Dynamics may also be less of an issue for in-flight testing because
the camera moves with the fuselage, thus any dynamics common
to the fuselage and wing would tend to cancel. Differences also
occur with targeting. The wind tunnel model is typically viewed
at an angle to the wing of about 301, whereas for aircraft in flight,
the data camera located on the fuselage would likely have an
angle-of-view to the wing closer to 101 or less. Because the light
return from retro-reflective material drops significantly as the
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Fig. 7.9. F/A-18 Active Aeroelastic Wing research aircraft and cameras/targets positions.
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angle of incidence moves away from normal, the retro-reflection
for aircraft with a shallow angle of incidence would be reduced. In
addition, the space required for a light source for retro-reflective
targets, along with its additional wiring, mounting, and opera-
tional concerns, limits the desirability of an additional light
source for in-flight testing. The use of natural features or passive
targets that do not require additional wiring or special mounting
is very desirable for in-flight testing. Flight-hardened hardware is
a major concern for any in-flight test technique. Flight hardware
must be able to endure a variable and hostile environment and
still continue to function. Ambient temperature can vary over a
range of up to 270 1F or more. Air pressure can go so low as to
allow electrical circuits to arc. Structural vibrations can some-
times shake electrical or mechanical components to pieces.
Moisture can be present as well as jet fuel. Further, flight systems
must be able to run unattended.

In order to apply single-camera, single-view photogrammetry,
the Euler angles (o, f, k) and the effective perspective center (Xc,
Yc, Zc) of the data camera must be determined in the aircraft
coordinate system. This was accomplished with photogrammetric
space resection. The principal point, (xp, yp), was approximated as
a fixed location near the center of the digital image extracted
from the DVD recordings at a resolution of 704 horizontal pixels
by 480 vertical pixels. In pixel space, the coordinates for (xp, yp)
were taken to be (352, 240) pixel, which during the conversion
from pixel space to millimeters on the image plane corresponded
to (xp, yp)¼(0, 0). The principal distance was estimated based on
an assumed focus toward the outboard portion of the wing and an
effective focal length.

The FDMS targets were used as reference for camera resection
because their locations had been measured with a precision
theodolite before flight testing began. The effective pixel spacings
Sh and Sv were adjusted from repeated photogrammetric resec-
tions until the computed location of the video camera from
resection was in reasonable agreement with its assumed location
(to within a tolerance of several centimeters). The horizontal pixel
spacing was further adjusted to minimize image plane resection
residuals to yield the reasonable estimates of Sh, and Sv. Once the
start values for the resection were tweaked closer to the correct
values, the correct global minimum was found.

The standard resolution flight-hardened video camera nor-
mally used for surveillance was used to record the image
sequences for processing. This camera is normally used for
surveillance of the left wing, provided the image sequences for
processing. Once all the camera orientation parameters are
known, two of three coordinates (with the third coordinate
known) can then be computed from a single-camera view. To
determine deflection, the vertical coordinates at a reference
condition are subtracted from the vertical coordinates at the
condition of interest. Angles are determined from the slope of
the computed coordinates in chordwise planes at the various
spanwise locations where targets or suitable image patches exist.
Local angles at various span stations at the reference condition
are subtracted from the condition of interest to yield the change
in angle (induced twist) due to aeroelastic loading.

A total of 361 digital images at a resolution of 704�480 pixel
were extracted from a DVD image sequence recorded from a
flight-hardened video-monitoring camera that views the left wing
of the AAW F/A-18 research aircraft. Of these, 31 images were
from a 1-s time history while the aircraft was on the runway. The
remaining 330 images covered the aircraft from level flight
(M¼0.95, q¼750 psf, altitude¼15,000 ft) through a 901 bank-
and-return maneuver over a time period of 11 s. Because some of
the FDMS LED target housings, especially outboard toward the
trailing edge of the wing, were barely distinguishable from the
background, the image locations of the targets for the three
images were manually selected. Although the red, green, and
blue components of each digital image could be analyzed sepa-
rately, the red component was found to have highest contrast for
most of the images and was used for further analyses. The
estimated precision of manual image coordinate location is at
best a pixel or so whereas centroiding of high-contrast targets
with proper background removal can yield a precision of
0.01 pixel.

Fig. 7.10 shows a vector representation of the relative
Z-deflection of the 16 FDMS targets from a level flight condition



Fig. 7.10. Relative Z-deflection from level flight to maneuver.

Fig. 7.11. Normalized deflection along the semispan location.

Fig. 7.12. Launcher rail relative position for runway, level flight, and maneuver.
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to a maneuver. The computed Z-values of the level flight image
were subtracted from the maneuver image to arrive at the
DZ-values. For Fig. 7.10, the deflection represented by the arrows
is not influenced by the distance of targets from the camera. In
other words, the amount of deflection indicated by the arrows is
independent of where on the image the arrows are located. The
most inboard targets exhibit very little deflection, as expected.
The deflection increases as one moves outboard toward the wing
tip. The housings nearest the leading edge and closest to the front
wing spar had higher contrast, with corresponding better preci-
sion than the rest of the housings. The corresponding normalized
(to maximum deflection) DZ is plotted in Fig. 7.11 versus the
normalized semispan location. The solid line in Fig. 7.11 is a
second-order polynomial fit to the seven targets nearest the
leading edge, indicated by circles, which lie along the front wing
spar. The midchord row targets (near the rear spar) are indicated
with squares and the targets nearest the trailing edge (aft spar)
are indicated with diamonds. Although the scatter in these data is
relatively large, it does indicate the correct trend and illustrates
the potential of useful measurements given low-contrast non-
ideal targets, even with low-resolution video. It is estimated that
an improvement approaching a factor of 10 could be achieved in
data precision with larger, better defined, high-contrast targets,
even with relatively low-resolution video recording.

The wing tip angles, while on the runway, in level flight and at
maneuver, are shown in Fig. 7.12. Flow is from left to right. The
solid lines are first-order linear least-squares fits to each (Y, Z)
data set for each of the three digital images. The dotted lines are
71 standard deviation of the polynomial fits. The characteristic
negatively induced wing twist due to aerodynamic loading is
evident upon comparing the runway data with level flight data.
Very little vertical deflection at the wing tip is noted when
comparing runway with level flight data. The main effect of the
maneuver is upward deflection of the wing tip and a slight
increase in wing twist at the tip. The relatively stable image
locations (and corresponding stable spatial object locations) of
the most inboard targets give credibility that the nature of the
wing tip deformation is effectively depicted in Fig. 7.12 rather
than camera movement, which would have caused image plane
motion of the most inboard targets as well.

7.3. Determining load from beam deformation

The feasibility of determining steady-state aerodynamic load
in wind tunnel testing has been studied based on beam (sting)
deformation measurements using a two-camera videogrammetic
system as an alternative to internal strain gauge balances [68].
The deformation of a cantilever beam was utilized in this study to
calculate the normal force and pitching moment. Here a model
support string is considered as a cantilever beam. Fig. 7.13 shows
a three-force beam with targets and a calibration rig and
two-camera videogrammetric system for beam deformation mea-
surement. Data reduction methods were developed to extract the
normal force and pitching moment from beam deformation data.
The local displacement dv and the slope change dvx of a
cantilever beam are

dv

dvx

 !
¼

x3=6EI �x2=2EI

x2=2EI �x=EI

 !
F

Mc

 !
, ð7:1Þ

where Mc is the moment with respect to a moment center.
Eq. (7.1) gives a linear relation between the deformation (dv, d vx)
and the force and moment (F,Mc), indicating that the force F and
moment Mc depend on the local displacement dv and the change of
slope dvx. Therefore, (F,Mc) can be determined from measurements
of (dv, dvx). Fig. 7.14 shows the local displacement and slope change
(dv, dvx) as a function of the normal force for a brass beam at four
different loading positions. It has been found that the dependence
of both the local displacement and slope change on the pitching
moment is linear when the moment center is suitably chosen. The
linear relations are clearly shown in Fig. 7.15 for a brass beam,
where the moment center is determined by an optimization
scheme to minimize the fitting error. This linearity is utilized in
the simple model method for data reduction. Typically, the relative
errors in extracting the normal force and pitching moment are
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roughly within 710% and 75% in the calibration ranges,
respectively.

Another data-reduction method is based on global deforma-
tion. From Eq. (7.1), one knows that the displacement dv along the
beam axis can be described by the theoretical relation dv(x)¼a

x2
þb x3, where x is the coordinate along the beam axis and the

coefficients a and b are related to F and Mc. In reality, however, the
relation between (a, b) and (F,Mc) is not as simple as that given by
Eq. (7.1). The empirical relations are symbolically expressed as
F¼ f1(a,b) and Mc¼ f2(a,b). For a given data point (a,b), a local 2nd-
order polynomial fit to a group of calibration data points is used
to recover (F,Mc). The method based on global deformation profile
is used to recover the normal force and pitching moment for a
beam. Fig. 7.16 shows measured deformation profiles of a brass
beam for different loads. These measured data can be well fit by
the theoretical solution dv(x)¼a x2

þb x3. Compared to the first
method based on the local displacement and slope change, the
method based on the global deformation profile gives smaller
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relative errors in the normal force (within 75%) and pitching
moment (within 73%) for the brass beam.

A steel sting-model combination used in the Unitary Tunnel at
NASA Langley was calibrated, as shown in Fig. 7.17. In calibration
tests, the maximum displacement of the sting is about 0.03 in and
the maximum change of the local bending angle is about 0.231.
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Two strain gauge bridges were also installed on the sting for
measurement of the normal force and pitching moment, allowing
a direct comparison between the strain gauge method and the
optical method. The local deformation quantities (dv, dvx) were
measured using the two-camera videogrammetric system. The
method based on the local displacement and slope change was
used to determine the normal force and pitching moment. As
shown in Fig. 7.18, the relative errors in the normal force and
pitching moment obtained by the optical method are about 75%
in comparison with 72% given by the strain gauges.
In order to measure the axial force along with the normal force
and pitching moment, a three-force beam was designed and
fabricated. As shown in Fig. 7.13(a), the three-force beam consists
of a simple beam and a spring/bearing device that only allows
translational motion along the beam axis. A number of retro-
reflecting targets are placed on the simple beam for measuring
the beam deformation. Four targets are placed on the spring/
bearing device as a reference and another four targets are placed
on the movable shaft for measuring the axial translational motion
relative to the reference targets. Fig. 7.19 shows the linear relation
between the axial force and the measured axial displacement. The
measurement errors in the normal force, pitching moment and
axial force are 74%, 73% and 78%, respectively.
7.4. Dynamic aeroelastic deformation

Dynamic deformation of a rectangular plate (wing) placed
vertically in flow was measured and further the dynamic force
was extracted by Roy et al., [91]. The plate experienced flutter as a
dynamic instability [11]. Flutter of a plate is typically described by
a combination of the bending and torsion modes. As shown in
Appendix C, the displacement w of a vibrating plate is given by an
expansion based on the eigenfunctions wr(x,y) (r¼1,2,3y). The
first nine eigenfunctions or mode shapes are illustrated in
Fig. 7.20. The main eigenfunctions, particularly the first and
second bending modes and the first torsion mode, can be
extracted from videogrammetric deformation measurements
[91,96].

A high-speed two-camera videogrammetric system was used,
consisting of two Canadian Photonic Labs MS1000 CCD cameras
with 8 mm lenses and two variable intensity light sources
directed through fiber optic bundles. The CCD cameras were
operated with a resolution of 640 by 480 pixel at about 140
frames per second. The system is capable of tracking light targets
on a dark background or dark targets on a light background. For
this test, retro-reflective targets were used on a flat black plate,
scattering light predominantly back to its source. The two light
sources supplied the lighting through fiber optic bundles. The end
of the bundles was attached to the top of the cameras, which
allowed the light to be reflected from the targets into the camera.
The ability to adjust the light intensity allowed the amount of
reflected light to be maximized without creating over saturation
of the images. The cameras are calibrated by placing a block
with known target coordinates in front of or in place of the model.



Fig. 7.20. Theoretical mode shapes.

Fig. 7.21. The 24-in flutter test plate.

T. Liu et al. / Progress in Aerospace Sciences 54 (2012) 1–5834
The orientation of the calibration block determines the reference
coordinate system for all tests using that calibration block.

All results are for three cantilever aluminum plates mounted
vertically. Fig. 7.21 shows the 24-in plate. All plates have a chord of
6 in and thickness of 0.04 in. The plates have lengths of 24, 18, and
12 in and contain 32, 28, and 24 targets, respectively. Four fictitious
targets were added in the calculations to represent the base of the
plates, which was clamped between two pieces of angle. The base
was securely bolted to the turntable on the floor of the wind tunnel
that was used to adjust the plate to zero angle of attack.

First, using an impact hammer to excite each of the plates
(impulse excitation), the combination of natural frequencies was
captured by the videogrammetric system. To determine the
damping factors zr and the natural frequencies or, the method
for the impulse transient solution is utilized to determine
the time-dependant amplitude, Zr(t), for each of the modes. The
following relation ZrðtÞpexpð�zrortÞsinordt is then used. The use
of Fourier Transform analysis for Zr(t) gives the frequency of
damped oscillation, ord ¼orð1�z

2
r Þ

1=2. It is assumed that the
exponential decay rate is zror, ignoring aerodynamic damping
effects. Using this assumption and knowing the natural frequency,
the damping factor, zr, can be determined. In general, once zr and
or are known, the generalized force, Nr(t), can be determined
from the measured magnitudes Zr(t) of forced vibration by using
Eq. (C7) in Appendix C.

The time-dependant amplitudes of the first and second bending
modes [w1(x,y) and w2(x,y)] and the first torsion mode [w4(x,y)],
which are recovered from the impact hammer tests, are shown in
Fig. 7.22 for the 24-in plate. The plot on the left shows a global view
of the amplitudes of the three modes while the plot on the right
focuses on the second bending and first torsion modes. The natural
frequencies measured for each of the plates are summarized in
Table 7.1 in comparison with the theoretical values of Warburton
[107]. The theoretical frequencies are systematically higher than the
measured values. Warburton [107] noted that the greatest errors
occurred for cantilever plates and the calculated frequencies for a
cantilever plate with an aspect ratio of 5 were 27 and 12 percent too
high for the first two bending modes, respectively. Fig. 7.23 shows
typical power spectra for the three mode amplitudes for the 24-in
plate. For more accurate comparison, a laser velocimetry system
was used to compare natural frequency results. This system
measures the Doppler shift of the laser wavelength to determine
the velocity of the object. The results agreed within 2% with the
videogrammetric measurements.

It was experimentally determined in a low-speed wind tunnel
that the plate would sustain flutter over a range of speeds
beginning at the critical flutter speed. Beyond this range, the
plates become stabilized. The flutter speed range for each of the
plates was examined. It was assumed that the flutter mode for
each plate could be represented by the modes for which natural
frequencies and damping factors were found. To investigate the
effect of velocity on flutter, tests were performed at several
velocities within the range of sustained flutter. Fig. 7.24 shows
the effect of velocity on the flutter frequency of each of the plates.
The effect of velocity on the flutter frequency of each of the plates
was studied. Interestingly, the flutter frequency of the 18-in and
12-in plates increases at a similar rate with increase in velocity.
The 24-in plate increases slightly then begins to decrease in
frequency. It was expected that the flutter frequency would
increase as the aspect ratio decreased. Fig. 7.25 shows the
deformation of the 24-in plates through one oscillation at the
wind speed of 44.05 ft/s. The recovered distributed force using
Eq. (C8) in Appendix C is represented by the color scale super-
imposed on the plate. The deformation is greatly exaggerated by the
scaling of the axis. The animation of the deformation easily shows
the contribution of the modes chosen to model the flutter in each
case, where the elapsed time between each frame is 0.005 s.

7.5. Aircraft and spacecraft impact testing

Non-intrusive optical measurement techniques that are based
on the principals of digital close-range photogrammetry are
providing valuable analytical support for studies conducted on
impact dynamics research vehicles. The vehicles being mentioned
have all been tested at the Landing and Impact Research Facility
(LandIR) at NASA Langley Research Center in Hampton, Virginia.
This facility, also known as the gantry, is a 240-ft high A-frame
structure used for testing full-scale and sub-scale crash vehicles.
It was originally built in 1965 to support the NASA Apollo Space
Program and to simulate mock landings on the moon. More
recently, the gantry is known for crash testing aircraft for the
sake of air safety. In addition to this line of work, since the recent
retirement of the Space Shuttle, the gantry is also being used to



Fig. 7.22. The amplitudes of the first and second bending and first torsion modes of the 24-in plate. Note that the left figure is an enlarged view to show the second

bending and the first torsion mode.

Table 7.1
Natural frequencies (Hz).

Videogrammetry theoretical value

24-in plate
First bending 2 2.389

Second bending 13.42 14.964

First torsion 16.667 23.613

18-in plate
First bending 3.54 4.248

Second bending 23.33 26.603

First torsion 22.833 31.609

12-in plate
First bending 8.53 9.558

First torsion 35.42 47.945

Fig. 7.23. Power spectra of the first and second bending and first torsion modes

for the 24-in plate.
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test new crew exploration space vehicles to ensure their safe
returns back to earth. This has included both, land and water
landings over a variety of landing scenarios.

Measurements being made at the gantry have included the
resolution of 2D and 3D object space coordinates, determined
from 2D images. Most of this imaging work has been obtained
from high-speed cameras that record the flight and impact
sequences. Numerous Phantom (Vision Research, Inc.) high-speed
video cameras are generally used at frame rates of 1000 frames
per second and image resolutions up to 1632�1200. For applica-
tions of the 2D measurements at the gantry, cameras are placed
perpendicular to the pendulum drop swing plane of the test
article for side views, and parallel to the drop swing plane for
front and rear views. Each camera is mounted on its own tripod
and leveled in two directions with bubble levels to help ensure
near orthogonal views. All of the cameras are also temporally
synchronized and simultaneously triggered to begin the video
acquisition. The test articles are outfitted with diffuse white
targets on a black background or black targets on a white back-
ground, depending on the contrasting color scheme of the test
article. Automated frame-by-frame target tracking is used where
the position of each target within each video frame is determined
to �0.1-pixel accuracy by computing the grayscale-weighted
target centroid location. On occasion target views can be dis-
rupted by gantry guide wires, tether ropes, and dust debris that is
kicked up on impact. For this, additional custom target centroid
coding was developed to handle the anomalies.

Measurements from 2D target tracking make use of orthogonal
camera setups where the test article and its targets are not rolling
or yawing out of plane during flight. A known target separation
between a pair of reference targets on the test article is used to
determine the scaling multiplier that converts image plane pixels
to engineering units. The image scaling multiplier can be deter-
mined from any video frame, and for the gantry testing the
chosen frame is at the time of impact. A good choice for a pair
of reference targets are targets situated on the centerline cross-
section of the vehicle that represent the outer most target pair.
Target separations are often determined to within a few thou-
sandths of an inch using a commercial photogrammetry measure-
ment system, VSTARS, developed by Geodetic Systems Inc.
However, linear types of (pullout) scales can also be used to
measure target separations to within an estimated 70.2 in
(0.5 cm). These errors in length measurement of the reference
target spacing can be larger than normally expected when there is
no clear line-of-sight path from target-to-target due to blockage
by model structural components. An example of this, as seen in
Fig. 7.26, is a full-scale gantry drop model being used to test a
prototype airbag landing assembly for the NASA Orion Crew
Exploration Vehicle (CEV). The targets on this vehicle labeled
1 and 2 are the reference targets and the line-of-sight between
them is being blocked by part of the vehicle the structure, in the
vicinity of targets 10, 11, and 12. Hard to measure targets with
structural blockage, such as these, is a classic case for when a
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Fig. 7.25. The 24-in plate flutter reconstructed from videogrammetric measurements and force distributions.
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system such as VSTARS becomes the better alternative when
making the reference measurements.

An application of 3D photogrammetry is being used at the
gantry, LandIR facility that uses two cameras in a stereo pair
setup, typically separated by approximately 30-ft while tracking
test articles at distances of approximately 60-ft. The advantage to
using a stereo pair of cameras over a single camera application is
the third dimension (in stereo) is triangulated, which gives a full
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6 degree-of-freedom solution. Both full field strain digital image
correlation (DIC) photogrammetry and target tracking photo-
grammetry are currently in use. The photogrammetry system
uses a grid of coded targets when camera calibrations are being
performed. This grid is photographed at various locations by each
camera before the start of any new measurements to ensure the
respective measurement volume is calibrated. Calibration and
resection techniques use a least-squares method to locate the
cameras in space, while also providing a calibrated volume for
measurement. Calibration coded target grids are custom made
and usually reside in the camera field of view during a test. There
are two main grid platforms in use at the LandIR facility. The first
is a 48-ft long by 37-ft high grid permanently mounted on the
gantry large white backdrop mainframe. Also laid out on the face
of the white backdrop is a 1-m lattice, typically used to support
land impacts. The second coded grid platform is a 40-ft long by
12-ft high arrangement mounted in a semi-permanent structure
Fig. 7.26. Photogrammetry targets on airbag drop model and a typical target

numbering convention.

Fig. 7.28. Two different camera perspectives

Fig. 7.27. Photogrammetry coded target calibration grids, (a)
for use with the Hydro Impact Basin (HIB) Testing. Fig. 7.27 shows
the two gantry calibration grids.

Photogrammetry methods have been used to successfully
track aerospace-related vehicles such as the Orion/MPCV Boiler-
plate Test Article (BTA) during a series of water impact tests at the
LandIR HIB (see Fig. 7.28). When tracking the impact conditions,
pitch, roll and yaw angle calculations of the test vehicles are a
particular interest of the researchers. The angle measurements
are extracted by examining the differences between created
artificial lines on the vehicle and a horizontal line created from
the calibration panel. By using a combination of horizontal and
vertical lines with projected angles, all three impact angles can be
resolved. Fig. 7.29 shows an example of the pitch angle time
history for a BTA water impact test.

Full-field strain digital image correlation photogrammetry has
been demonstrated on the crash test of a small MD-500 helicopter
at the NASA gantry [60]. The purpose of this test was to evaluate an
external deployable energy absorbing concept in which the out-
come of much of the airframe deformation was of interest. Two,
of two different water impact BTA tests.

the land landing grid, and (b) water landing grid (right).

Fig. 7.29. Pitch angle time history for BTA water impact test.



Fig. 7.32. Impact velocities of MD-500 helicopter.
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nearly identical full-scale crash tests using the same MD-500
fuselage body were successfully demonstrated (see Fig. 7.30), with
and without deployable energy absorbers (DEA). For this test, a
small portion of the tail section was painted with a typical speckle
pattern for use with the DIC. Fig. 7.31 shows a sample fringe plot of
major strain during impact. Target tracking photogrammetry has
been demonstrated on multiple types of full- and sub-scale impact
vehicles [64]. Each discrete target is tracked throughout the
impact, and the results can be reported as a time history of the
rigid body average of all of the points, or they can be reported for
each point individually. Results typically include impact velocities,
and however if large amounts of deformation occur (as with the
MD-500 helicopter mentioned above), the relative change between
points can also be reported. Fig. 7.32 demonstrates the velocity
time history for the MD-500 helicopter test. Note that a large
amount of the data occurs after the impact time.

Survivability studies from anthropomorphic data of a Human
Surrogate Torso Model (HSTM), along with three other passenger
crash dummies, were part of the main test objectives for the MD-
500 helicopter test. The first crash landing test included the vehicle
with DEAs on it because the expectancy of survivability with the
vehicle and its occupants were much greater than without the
DEAs. Data results from the second crash landing test, without
DEAs, proved this theory correct. Deflection data from multi-axial
Fig. 7.30. MD-500 helicopter airframe being prepared for crash test with 4 crash

dummies inside and 2 deployable energy absorbers beneath.

Fig. 7.31. MD-500 helicopter tail major strain at impact.
strain gages, four crash dummies, and photogrammetric measure-
ment results indicated the airframe structural components and its
occupants, after the flight with DEAs, survived with relatively little
or no damage. Only minor repairs were required for the airframe
after the first drop. After the following, second crash test, sig-
nificant damage was reported to the airframe and to the well being
of the instrumented crash dummies inside.
8. Quantitative flow diagnostics

Photogrammetry provides the relationship between the image
plane and the object space, which is an essential part in all
quantitative image-based flow diagnostic and visualization tech-
niques. In particular, flow visualizations on a surface (either a
solid surface or a virtual plane like a laser sheet) require mapping
of data extracted from images onto the surface in the object
space. These techniques include pressure and temperature sensi-
tive paints, oil-film skin friction measurements, projection Moiré
interferometry, Doppler global velocimetry, particle image velo-
cimetry, and planar laser induced fluorescence.

8.1. Relationship between image plane and surface

8.1.1. Point correspondence

As pointed out in Appendix B, to establish the point corre-
spondence between images, at least four cameras (or four images)
are needed. However, when an object-space point is constrained
on a surface, the point correspondence is one-to-one for cali-
brated/oriented cameras. A surface in the 3D object space that has
the one-to-one correspondence to the image plane, as illustrated
in Fig. 8.1, could be a solid surface or a virtual surface like laser
sheet. Consider a surface in the object space X3

¼F( X1,X2 ) that is,
imposed as a surface constraint in the perspective projection
transformation. Therefore, Eq. (B3) in Appendix B becomes

w11X1
þw12X2

þw13FðX1, X2
Þ ¼W1�Xc

w21X1
þw22X2

þw23FðX1, X2
Þ ¼W2�Xc , ð8:1Þ

where wij (i¼1,2 and j¼1,2,3) are the elements of the vectors
W1¼(w11, w12, w13)T and W2¼(w21, w22, w23)T. For the given
surface X3

¼F(X1,X2 ), the coordinates ( X1, X2 )T can be obtained
from the image coordinates x¼(x1, x2)T by solving Eq. (8.1). Thus,
the coordinates X¼( X1, X2, X3 )T on a surface in the object space
can be symbolically expressed as a function of the image coordi-
nates x¼(x1, x2)T by X¼fS(x). In fact, this is a parametric
representation of the surface using the image coordinates
x¼(x1, x2)T as the parameters. Generally, the function fS(x) cannot



Fig. 8.1. One-to-one correspondence between the image plane and a surface in

the object space.

Fig. 8.2. Typical pressure distribution mapped onto a surface grid of the model.

From Engler et al. [40].
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be written as a closed-form solution except for some simple
surfaces such as a plane and a cylindrical surface.

8.1.2. Velocity correspondence

Differentiating Eq. (B3) in Appendix B leads to dW1(n)dXþ

W1(n)ddX¼dW1(n)dXc(n) and dW2(n)dXþW2(n)ddX¼dW2(n)dXc(n),
where the subscript index (n) denotes the nth camera, and
W1 ¼ ðx

1�x1
pþdx1Þm3þcm1 and W2 ¼ ðx

2�x2
pþdx2Þm3þcm2 are

the vectors discussed in Appendix B. For the fixed lens distortion
terms, since dW1ðnÞ ¼ dx1

ðnÞm3ðnÞ and dW2ðnÞ ¼ dx2
ðnÞm3ðnÞ, we have

W1ðnÞ�U ¼m3ðnÞ�½X�XcðnÞ�u
1
ðnÞ,

W2ðnÞ�U ¼m3ðnÞ�½X�XcðnÞ�u
2
ðnÞ, ð8:2Þ

where dX/dt¼U(X)¼(U1,U2,U3)T is the velocity field in the 3D
object space and uðnÞ ¼ dxðnÞ=dt¼ d=dt½x1

ðnÞ,x
2
ðnÞ�

T is the optical flow
that is defined as the velocity field in the image plane that
transforms one image into the next image in a time sequence.
The physical meaning and the mathematical definition of the
optical flow in various flow visualizations have been discussed by
Liu and Shen [73]. For particle images, the optical flow can be
determined by correlation-based methods [89,2] and particle track-
ing method [39,76]. For continuous passive scalar images and other
flow visualization images, the optical flow can be determined by
solving the physics-based optical flow equation [73].

If the correspondence between the image coordinates
xðnÞ ¼ ½x1

ðnÞ,x
2
ðnÞ�

T in at least two cameras (nZ2) is known, the
corresponding object-space point X of a particle can be deter-
mined by photogrammetric intersection. In general, as pointed
out in Section 3.5, at least four cameras are needed for determin-
ing the point correspondence based on the Longuet-Higgins
equations. If the optical flow u(n) in the nth image is determined
by tracking individual particles, the right-hand-side terms of
Eq. (8.2) can be known for calibrated/oriented cameras. Thus, the
3D velocity field U(X) can be determined by solving Eq. (8.2) using a
least-square method. This corresponds to 3D particle tracking
velocimetry [39]. In another case, if particles in flow are illuminated
by a suitably thick laser sheet, there is the one-to-one point
correspondence between particle images and the laser sheet plane
in a certain average sense since the laser sheet has a finite
thickness. Therefore, once the optical flow u(n) is obtained by a
correlation-based method in particles images taken by at least two
cameras with different viewing angles, the velocity U(X) on the
laser sheet plane can be determined, which corresponds to stereo-
scopic PIV [3,88]. For volumetric flow visualizations in tomographic
velocimetry, Eq. (8.2) cannot be directly used since the optical flow
u(n) is interpreted as the path-averaged velocity that is not
exclusively associated with an object-space point X in this case [73].
8.2. Pressure and temperature sensitive paints

Pressure- and temperature-sensitive paints (PSP and TSP) are
global techniques for surface pressure and temperature measure-
ments [65,70,10]. After the results of pressure and temperature
are extracted from images of PSP and TSP, it is necessary to map
the data in the image plane onto a surface grid in the 3D object
space to make the results more useful for aeronautical engineers
and researchers. The collinearity equations in photogrammetry
provide the perspective relationship between the 3D coordinates
in the object space and corresponding 2D coordinates in the
image plane. The known object space coordinates X¼( X,Y,Z )
[X¼(X1, X2, X3 )T] on a given model surface are mapped into the
image coordinates (x,y) using Eq. (8.1), and then PSP and TSP data
at the image points are associated with those at the correspond-
ing points on the surface. Fig. 8.2 shows a pressure distribution
mapped onto an aircraft model surface from PSP images in a
transonic flow [40]. Further, this mapping is necessary for
calculating aerodynamic loads and surface heat transfer and for
comparison with CFD results.

From the standpoint of photogrammetry, a key of this proce-
dure is geometric camera calibration/orientation by solving the
collinearity equations to determine the camera interior and
exterior orientation parameters, and lens distortion parameters.
Simpler resection methods have been used in PSP and TSP
systems to determine the camera exterior orientation parameters
when the interior orientation and lens distortion parameters are
set [37,63,92]. The DLT was also used [8]. The optimization
method for comprehensive camera calibration was developed by
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Liu et al. [67], which can determine the exterior orientation,
interior orientation and lens distortion parameters (as well as the
pixel aspect ratio of a CCD array) from a single image of a 3D
target field. As pointed out before, the optimization method,
combined with the DLT, allows automatic camera calibration
without an initial guess of the orientation parameters; this
feature particularly facilitates PSP and TSP measurements in wind
tunnels. Besides the DLT, a closed-form resection solution given
by Zeng and Wang [111] is also useful for initial estimation of the
exterior orientation parameters of a camera based on three
known targets.

Cattafesta et al. [31] and Cattafesta and Moore [32] presented a
photogrammetric application to boundary layer transition detection
on a three-dimensional model. A TSP system has been developed
for the purpose of transition detection and applied to several three-
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Fig. 8.3. Heat transfer distribution visualizing transition mapped onto a half of a
dimensional models over a wide speed range. TSP detects transition
by visualizing the temperature change caused by different heat
transfer rates in laminar and turbulent flow regimes in a transient
thermal process. A key element of the system development has
been photogrammetric tools for mapping temperature (or heat
transfer rate) to a three-dimensional grid of the model surface.
Fig. 8.3 illustrates reconstruction of a transition image of a swept-
wing model in Mach 3.5 flow mapped onto the half of the model
surface grid by using photogrammetry. The bright region corre-
sponds to the turbulent boundary layer where the heat transfer rate
is higher than that in the laminar boundary layer. The onset of
transition is demarcated in the image as a bright parabolic band on
the wing where the cross-flow instability mechanism dominates
the transition process. However, no transition is observed near the
centerline of the model. This is because near the symmetric plane of
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CFD grid of a swept-wing model at Mach 3.5. From Cattafesta et al. (1996).
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the model the stability is dominated by the Tollmien–Schlichting
instability mechanism that is weaker than the cross-flow instability
mechanism.
8.3. Oil-film interferometry

Image-based oil-film interferometry provides measurements
of wall shear stress or skin friction that can be obtained relatively
quickly and with good accuracy in wind tunnels [82]. Oil-film
interferometry measures the thinning rate of a thin oil film
applied to a test surface to determine the skin friction on the
surface. Fig. 8.4 shows how the interference process occurs in a
thin film. Light striking the oil surface is partially transmitted and
partially reflected from the oil/air interface. The transmitted light
passes through the oil and strikes the oil/surface interface, where
it is partially reflected and partially absorbed. The reflected light
passes back through the oil and exits the oil film with a phase
difference from the light that was reflected from the air/oil
interface. When the two beams pass though a lens to create an
image, they constructively or destructively interfere depending
on their phase difference as shown in Fig. 8.4. The interference
between many such beams produces a fringe pattern. As the oil
film thins, the interference pattern will shift, and the spacing
between the fringes will grow as shown by the interference
pattern in Fig. 8.4(a). The height of the oil is related to the fringe
pattern through the phase difference f

h¼
lf
4p

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

f �n2
asin2yi

q , ð8:3Þ

where l is the wavelength of the illuminating light, nf and na are
the indices of refraction of the oil and air, respectively, and yi is
the local incidence angle of the light. Knowing the oil height, the
wall shear stress can be determined using one of the several
analysis methods [82], which are all based on some form of (or
simplified form of) Eq. (8.3).

Accompanying the increased use of oil-film interferometry has
been a demand for higher accuracy and less time-intensive analysis.
Fig. 8.4. Schematic depicting amplitude-splitting or Fizeau interferometry in oil-

film interferometry: (a) fringe patterns at two different times, (b) the interference

process, and (c) constructive and destructive interference. The dashed line in

(a) corresponds to the location where the interference in (c) is given.
One way that these two issues can be addressed is through the use
of photogrammetry [82]. Perhaps most obvious is the need for one-
to-one mapping of the image plane to the model surface in the
object space. To analyze the interferograms for skin friction, the
height distribution versus a spatial coordinate is needed as indi-
cated by Eq. (8.3). Less obvious, and what makes the need for
photogrammetry for oil-film interferometry unique, is the need to
know the light incidence angle yi in Eq. (8.3). As evident in Fig. 8.5
for the NASA Hump model, surface curvature plays a large role in
determining the incidence angle. However, when cameras are used
in close proximity to the model surface in most implementations of
oil-film interferometry in wind tunnels, the camera’s perspective
can also play a large role. When the camera is in close proximity to
the model surface, even flat surfaces will have significant changes
in incidence angle across the region imaged. Photogrammetry can
be effectively used to address both model curvature and camera
perspective issues. A final justification for photogrammetry is that it
automatically handles the geometrical issues in imaging, which
saves time and simplifies the requirements for measuring the
geometric placements of the optical components of the oil-film
interferometry system.

To demonstrate the importance of photogrammetry in the
interferogram analysis process, an experiment was performed at
NASA Langley on a hump mounted on a splitter plate, providing
significant challenges due to model curvature and camera proxi-
mity. Fig. 8.5 shows the complex geometry for this test case. Due
to limited optical access, the camera and light source had to be
inserted into the wind tunnel after each test. This resulted in an
extremely close proximity of the camera to the model surface. The
combined effects of camera proximity and model curvature make
photogrammetry critical to calculating accurate skin friction
values. One case is an interferogram taken on the splitter plate
downstream of the hump where the boundary layer is recovering
from separation. The surface here is flat, so all of the angle
variations are due to a close proximity. Fig. 8.6(a) shows the
original interferogram with an overlaid grid with 6.35 mm spa-
cing. The convergence of the almost vertical lines toward the top
of the figure is quite evident, although all the lines appear straight
as they should on a planar surface. The corresponding variation in
the incidence angle is shown in Fig. 8.6(b) where angles from 221
to 301 are observed in the region containing fringes. The mea-
sured camera angle (relative to the splitter plate) was 231. The
skin friction distribution from this interferogram has been deter-
mined using the measured camera angle and the distribution
calculated from photogrammetry. The two distributions are
shown in Fig. 8.7 where it is evident that the difference between
the two calculated results decreases as x/c increases. The point
where the error drops toward zero corresponds to the lower
Fig. 8.5. Schematic of the NASA Hump model and oil-film interferometry setup.
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Fig. 8.7. Averaged skin friction values from a location downstream of reattach-

ment where the model surface is flat: triangle - yi set to measured camera angle;

and circle - yi determined from photogrammetry results. Fig. 9.1. The NASA LaRC OV-10 experimental aircraft with two cameras at the

wing tips and one camera at the top of the left vertical tail.
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portion of the grid in Fig. 8.6(a) where photogrammetry estimates
the angle to be approaching 231 as shown in Fig. 8.6(b). At the
lowest x/c point in Fig. 8.7, the difference in the calculated skin
friction values is just under 3%. Although this may not sound like
a lot, it is only one contribution to the uncertainty and alone may
be unacceptable when high accuracy measurements are required.
Fig. 9.2. Runway with high-contrast edges.
9. Vision-vased autonomous landing of aircraft

9.1. Two-camera method

Autonomous landing requires the accurate determination of
the aircraft position and attitude relative to the ground coordinate
system. A vision-based system has been developed to determine
the aircraft position and attitude based on visible features like
runway edges on the ground [71,105]. The vision-based system is
applicable to small general aviation aircraft as well as unmanned-
air-vehicles (UAVs) and micro-air-vehicles (MAVs). The vision
system contains two (or multiple) CCD cameras located at
suitable positions on an aircraft (such as wing tips). Fig. 9.1 shows
the NASA LaRC OV-10 experimental aircraft with two cameras at
the wing tips and one camera at the top of the left vertical tail.
With effective image processing and videogrammetric algorithms,
the vision system is able to track natural patterns and artificial
targets on a standard runway and determine in real time the
aircraft position, attitude and velocity relative to a fixed ground
coordinate system. The distinct patterns and targets on the
ground should be identified in images in order to determine the
position of an aircraft using videogrammetric methods. A distinct
pattern of a runway is its edges that are identified as high-
contrast lines between the runway and its surrounding ground
(see Fig. 9.2). The high-contrast lines on images could be inter-
preted in a sense of either the gray level or statistical character-
istics of patterns. After the points (or targets) are correctly
identified and their coordinates are accurately measured in
images, the position and attitude of a landing aircraft in the fixed
ground coordinate system can be determined in real time using
two calibrated/oriented cameras in a vision system. The velocity
can be also determined from a time sequence of position data.

In order to determine the camera exterior and interior orienta-
tion parameters, field camera calibration/orientation should be
done for flight tests, requiring a large target field with the known
coordinates in an appropriate aircraft body system. As shown in
Fig. 9.3, the aircraft calibration target field is set on the east side of
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the NASA Langley Hanger Building. Eight targets (2 ft diameter) are
placed on the east wall of the hanger annex. The targets are
fabricated from 1/8-in thick aluminum sheet, painted white with a
black circle. Also, eight smaller targets (one foot diameter) are
placed on the ground; several of these are located on the grass
regions next to the east wall of the hanger annex. A team from the
NASA Langley GIS group takes careful measurements of the relative
locations of the centriods of each target with respect to the aircraft
nose wheel marking on the tarmac. The horizontal reference plane
will be aligned perpendicular to the gravity vector. Thus, the target
field for camera calibration/orientation is established. Pre-flight
and post-flight tests should be carried out to examine the repeat-
ability of camera calibration and orientation.

In Appendix D, a method based on two cameras mounted on an
aircraft is described. As shown in Fig. 9.4, there are three relevant
coordinate systems: the ground, aircraft and image coordinate
systems. In the right-handed aircraft coordinate system ( Xac, Yac,
Zac ), the Xac axis directs from the head to the tail along the fuselage,
the Yac axis directs along the right wing and the Zac axis points
upward. The ground coordinate system ( Xg, Yg, Zg ) is located at the
end of a runway. The position and orientation of the image
Fig. 9.3. Target field for camera calibration/orientation.

Fig. 9.4. (a) The ground and aircraft coordinate systems, (b) the aircr
coordinate system is fixed relative to the aircraft coordinate system
when an aircraft is rigid. The relationship between the image and
aircraft coordinate system is determined by camera calibration/
orientation on the ground. By contrast, the position and orientation
of the aircraft coordinate system are time-dependent relative to the
ground coordinate system during landing.

The main objective is to recover the position and attitude of an
aircraft relative to the ground coordinate system. As shown in
Fig. 9.4(a), two points P1 and P2 on the right edge of a runway and
third point P3 on the left edge (viewed from the aircraft) are
selected. The coordinates of the points P1, P2 and P3 in the aircraft
coordinate system ( Xac, Yac, Zac ) are determined by photogram-
metric intersection in a calibrated two-camera vision system
mounted on an aircraft. Thus, the triangle P1P2P3 defines three
unit orthogonal vectors on the ground expressed in the aircraft
coordinate system. The vectors eig (i¼1,2,3) constitute a local
coordinate system on the ground. It is assumed that this local
system is just a translated ground coordinate system ( Xg, Yg, Zg ).
The relation between eig (i¼1,2,3) in the ground coordinate system
and eiac (i¼1,2,3) in the aircraft coordinate system determines the
Euler angles f, y, and c that are the roll, pitch and yaw angles of an
aircraft relative to the ground coordinate system (see Appendix D).
Further when the runway is flat and the runway width is given, the
aircraft latitude and the lateral position of the aircraft relative to
the runway centerline can be determined. In general, the two-
camera (or multiple-camera) approach gives the position and
attitude of a landing flight vehicle (aircraft or spacecraft) in the
ground coordinate system defined by three selected points.

To estimate the effects of random noise in images on the position
and attitude calculation, sensitivity simulation is conducted for
typical cases of landing on a 4100-ft long and 70-ft wide runway.
The attitude of an aircraft is given by the Euler angles f¼�21, y¼51,
and c¼31. Three aircraft positions during landing are considered,
and for example, in Case 2, ðXgOac

,YgOac
,ZgOac

Þ ¼ ð4477,40,118Þ ft.
When the wingspan is 32 ft, the camera orientation parameters
for the camera on the left wing are (o,f,k,Xc,Yc,Zc)¼
(851,�881,01,0,0,16 ft) and c,xp,yp, K1, K2,P1,P2, Sh/Sv)¼12 mm,0,0, 0, 0,
0, 0, 12/13). For the camera on the right wing, the camera orienta-
tion parameters are (o,f,k,Xc,Yc,Zc)¼(851,�881,01,0,0, �16 ft) and
(c,xp,yp, K1, K2,P1,P2, Sh/Sv)¼(12 mm,0,0, 0, 0, 0, 0, 12/13). The camera
aft and image coordinate systems, (c) the attitude of an aircraft.
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format is 640�480 pixel and the horizontal and vertical pixel
spacings are 0.012 and 0.013 mm/pixel. Three selected points P1, P2

and P3 on the edges for position and attitude determination are
( Xg,Yg,Zg )¼( 1990,35,0 ), ( 3490,35,0 ) and ( 2990, �35,0 ) ft,
respectively.

The effect of random noise in images on the accuracy of
determining the position and attitude of an aircraft is examined.
The random noise has a Gaussian distribution with a standard
deviation s. Fig. 9.5 shows the simulated negative images of the
edges of the runway taken from cameras on the left and right
wings for Case 2, where the Gaussian random noise with
s¼1 pixel is added to the edge images. The runway edges are
fit using a linear function. The average horizontal scale of the
runway in images is about 23.9 pixel. The points P1, P2 and P3 are
selected in the image from the right-wing camera and the
corresponding points in the image from the left-wing camera
are determined by intersecting the epipolar lines with the runway
edges. The errors in estimation of the position and attitude due to
the random noise are shown in Fig. 9.6 for Case 2, where the
normalized random noise is the noise level s normalized by the
average horizontal scale of the runway. The aircraft position in
the Xg coordinate (along the runway) is particularly sensitive to
the noise; the error could be about 40 ft when the noise is 1 pixel.
Fig. 9.5. Simulated images in Case 2: ð

Fig. 9.6. Errors in position and attitude estimations due to rand
The large errors are due to a small viewing angle of the cameras
relative to the ground. The errors in the latitude and lateral
position are less than one foot when the noise is 1 pixel. The
attitude estimation is less sensitive to the random noise. When
the noise is 1 pixel, the error in the roll angle is about 21 and the
errors in the pitch and yaw angles are less than 0.21. Similar
results are obtained for c other two position cases. Except the Xg

position of the aircraft, the absolute accuracy of estimation of the
position and attitude of the aircraft in the presence of the random
noise is improved when the aircraft is approaching the runway.
This is because the runway looks larger in images and the relative
noise is smaller. However, the error in the Xg position of the
aircraft does not change much in these three cases.
9.2. Single-camera method

A single-camera method was suggested by Sasa et al. [98] to
determine the aircraft position and attitude based on the runway
edges and horizon. In Appendix D, the problem is reformulated.
The effects of random noise in images on the position and attitude
calculation using the single-camera method for the three cases
are examined. Fig. 9.7 shows a simulated image of the runway
XgOac
,YgOac

,ZgOac
Þ ¼ ð4477,40,118Þ ft.

om noise in images for Case 2 (the two-camera approach).



Fig. 9.7. Runway edges, horizon and horizontal line in the image plane.

Fig. 9.8. Errors in position and attitude estimations due to rando

Fig. 9.9. Sensitivity of position and attitude estimations t
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edges, horizon and horizontal line Xg¼0. The errors in estimation
of the aircraft position and attitude due to the random noise are
shown in Fig. 9.8 for Case 2, where the normalized random noise
in the image plane is the noise level normalized by the principal
distance c. Here, the noise is not added to the horizon such that
the roll angle is independent of the noise. The errors in estimation
of the position and attitude due to the random noise are also
calculated for Cases 1 and 3. Given the noise level in the image
plane, the errors in estimation of the position and attitude are
reduced when the aircraft approaches to the runway.

The estimation of the roll angle mainly depends on the
horizon. When the horizon cannot be identified, an artificial
horizontal line (an array of targets located at a sufficiently far
location) can be used to estimate the roll angle. The accuracy in
estimation of the roll angle is related to the relative aircraft height
to the horizontal line that is characterized by 9ZgOac

=XgOac
9. Note

that when XgOac
-�1, the horizontal line approaches to the

horizon. Fig. 9.9 shows the effects of 9ZgOac
=XgOac

9 on estimation
of the aircraft position and attitude. The error in the roll angle
linearly depends on 9ZgOac

=XgOac
9; the pitch and yaw angles are

almost independent of 9ZgOac
=XgOac

9.
m noise in images for Case 2 (the single-camera approach).

o the relative aircraft location to the horizontal line.



Fig. 10.2. Image used in photogrammetric processing.
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10. Measurements for gossamer space structures

The term ‘‘gossamer’’ is generally applied to ultra-low-mass
space structures. Frequently these structures are designed to be
tightly packaged for launch, and then to deploy or inflate once in
space. These properties will allow for in-space construction of very
large structures 10 to 1000 m in size such as solar sails, inflatable
antennae, and space solar power stations using a single launch.
Most gossamer space structures rely on ultra-thin membranes and
inflatable tubes to achieve a reduction, compared to standard
space hardware, in launch mass by a factor of 10 and in launch
volume by a factor of 50. The technology has been adapted for
possible use in a wide variety of applications, including deployable
ballutes for aerobraking on Mars, telescope sunshields, and mem-
brane space solar arrays [55,33,78,108]. Gossamer structure
research has reached the stage where measurements of the sur-
face profile and dynamic behavior has become an integral part of
the design process. Furthermore, measurements of both ground
test and in-flight structures are essential for continued gossamer
development.

The primary reason to perform surface profiling measure-
ments on gossamer structures is to validate computational
models. Once these models are validated they become reliable
design tools for future spacecraft systems. To obtain high fidelity
data that will be useful for validating computational models, the
measurement techniques used to quantify the behavior of gossa-
mer structures must ideally be non-invasive, and consequently
the metrology requirements for gossamer structures require
special design considerations. Non-contact instrumentation is
preferred because gossamer structures are (1) delicate, thin and
ultra-low mass, and (2) typically transparent or specularly reflec-
tive. There are several non-invasive or minimally invasive tech-
niques and instruments available to quantify the shape and/or
dynamic behavior of gossamer structures, including projection
moiré interferometry, light detection and ranging systems, capa-
citive type displacement sensors, laser vibrometry, and photo-
grammetry. Photogrammetry (or videogrammetry) is a relatively
simple and inexpensive technique. Particularly, combined with
dot projection techniques, it can provide completely non-contact
surface measurements suitable for near real-time applications.
Based on the projection of a dense dot pattern (targets), images
from two or more video cameras are collected and processed to
yield the three-dimensional shape of the object based on the
spatial coordinates of the projected dots.
Project

Wrinkle 
Test Area 

Fig. 10.1. (a) Two-meter Kapton single qua
10.1. Static measurements of 2-m Kapton solar sail

The applications discussed in this section were conducted for
dual purposes: to develop measurement methods suitable for use
on actual solar sail spacecraft and to obtain measurements for
validation of structural analytical models. The experiments used
low-fidelity, generic solar sail test articles at NASA Langley
Research Center. These low-fidelity test articles are sub-scale
models manufactured from solar sail quality materials but are
not directly scalable to full size solar sails. The developed
methods could be applied to other current and future high-
fidelity gossamer test structures and space missions.

10.1.1. Low density field

This experiment was designed to assess the feasibility of using
projected circular targets instead of attached retro-reflective
targets on highly reflective membrane surfaces. The 2 m per side,
square, aluminized Kapton solar sail test article shown in
Fig. 10.1(a) was selected for static shape measurement because
of its continuity (other test articles are divided into four quad-
rants). A pattern of approximately 400 dots was projected onto
the membrane and imaged by four consumer digital cameras. The
cameras were positioned at approximately 901 separation at the
corners of the sail and simultaneously photographed it to avoid
possible membrane movement between images, as shown in
Fig. 10.1(b). Fig. 10.2 shows an actual image used in the photo-
grammetric processing, with the dot pattern clearly visible on the
Cameras

or

Point Cloud

drant solar sail, (b) full field test setup.



X Position (m
)

Z 
P

os
iti

on
 (m

)

Y Position (m)

0.01
0.005

0

0.8
0.4

–0.4

–0.8 –0.8

–0.4
0

0.4
0.8

0

0.014 m

0.011 m

0.008 m

0.005 m

0.002 m

-0.001 m

-0.004 m

Fig. 10.3. Shaded surface for low density measurements of the solar sail test

article (Z position amplified).
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surface of the sail. The image is underexposed to create high-
contrast targets optimal for photogrammetric measurement.

Several trouble spots are evident in the image in Fig. 10.2. The
long exposure time (30 s) required to obtain the images due to the
reflective nature of the membrane allowed ambient light to also
image on the sail, causing the background to appear much
brighter than desired. In the image in Fig. 10.2, ambient light
imaging on the upper right corner of the sail drastically reduced
the contrast between the dots and the membrane in that area,
leading to a loss of target information. Also, there are several ‘‘hot
spots’’ in areas where the sail curled, reflecting much more light
into the camera than in the rest of image and washing out all data
(i.e., targets) in that particular region. Two hot spots are visible in
both bottom corners of the image in Fig. 10.2. The low density of
the dot pattern creates a low resolution measurement condition,
meaning that only the overall shape and not the intricate wrinkle
pattern seen in Fig. 10.2 can be adequately characterized from
these images. While the long exposure time, hot spots, and low
resolution do not preclude measurement, they detract from the
achievable accuracy and precision of the process.

Fig. 10.1(b) shows an image of the point cloud and camera
locations created from the 3D viewer in the photogrammetry
software, which can be studied to verify that the project pro-
cessed correctly and that the setup and result are as expected. The
four camera stations (one in each corner of the sail) and the final
point cloud are positioned as expected. This result demonstrates
that the camera positions have been calculated successfully and
that the point location calculations have produced a nearly planer
three-dimensional cloud, expected when measuring a predomi-
nantly flat membrane.

Fig. 10.2 demonstrates how the imperfections on the upper
right corner in the image affect the photogrammetric processing
of the project. Some targets in the area are not visible and
therefore could not be marked (marked targets are identified by
an asterisk). Several other targets do not have sufficient contrast
to be marked using the automatic LSM process and therefore were
marked by hand, reducing precision. The greatest amount of
wrinkling occurs at the corners of the membrane making them
important in the measurement. The ambient light, therefore, has
caused a loss of accuracy and data in one of the most critical areas
of the sail.

The photogrammetry software estimates precision using error
propagation techniques. The average of all the precision values for
all of the points in the project was calculated to be 0.16 mm,
meaning that overall for the two meter sail, the measurements
were precise to one part in 12,500 (1:12,500). The three-dimen-
sional point cloud corresponding to centers (centriods) of the
targets was imported into a contour mapping program, which
was used to visualize the membrane shape. The first step in the
visualization involved the creation of a continuous surface from
the imported, discrete data; a process called gridding. Several
different algorithms are available to the user during grid creation,
depending on the amount of smoothing and interpolation desired.
Subsequently the grid was displayed as a shaded surface repre-
senting the out of plane deflection of the membrane surface.

The results of the mapping for the gathered photogrammetry
data are shown in Fig. 10.3. The shaded surface shows the overall
low-resolution shape of the membrane. This type of surface
measurement is useful for assessing the overall shape of the
structure (e.g., is it warped or flat), but is of little value for
characterizing wrinkle patterns, which requires high-resolution
data. However this experiment does demonstrate the feasibility of
using non-contact dot projection photogrammetry to obtain sur-
face shape models of highly reflective aluminized membranes. A
test to measure wrinkle pattern and amplitudes of this same test
article is detailed in the following section.
10.1.2. High density field

The high density full-field test described here was designed to
generate measurements of comparable resolution to the results in
the above high resolution wrinkle test over the entire surface of
the two meter Kapton solar sail. The same test article was used
once again, however the sail was rotated slightly, as shown in
Fig. 10.4, to create a small gravity-induced billow in the bottom
half of the membrane. The billow was used to demonstrate the
ability of the method to simultaneously measure both medium-
amplitude wrinkles and global non-planar shapes. Four profes-
sional digital cameras at 901 angles of separation at the corners of
the membrane simultaneously photographed a grid of approxi-
mately 10,800 targets created by high power industrial flash
projector. The use of the professional cameras and turn-key
projector signify a transition to professional grade hardware
designed to yield full-field, high-resolution, high precision mea-
surements the 2 msolar sail structure.

One image used in the photogrammetric processing is shown
in Fig. 10.5. Ambient room lighting was minimized, but data was
still lost due to the intensity of the flash projector. Because of the
billow in the sail and the angles involved, a percentage of the light
reflected by the membrane fell onto the floor. The high intensity
of the projector meant a large amount of light, when scattered in
all directions by the floor, imaged back onto the membrane. These
images of the light on the floor were of sufficient intensity to
wash out the original points. Curling of the membrane and the
large distances involved again led to hot spots in the images;



Fig. 10.5. Image used in photogrammetric processing.

Fig. 10.6. Two views of the contour surface generated.

Fig. 10.7. Two-meter four quadrant Vellum solar sail test article.
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however all of the data loss was compensated for again by the
redundancy of four cameras.

A three dimensional point cloud again resulted from the
photogrammetric processing. The time required to generate the
final results, however, was much greater than in the two previous
examples (three weeks vs. one). The current photogrammetry
software was not designed to process such a large number of
points, over 10,000 in this measurement, or to handle such close
point spacing. Approximately 10,800 dots were projected onto the
membrane, and with the small size of the targets and the distance
from the test article to the cameras (approximately 3 m), some
dots appeared as small as 5 pixel in diameter with as little as
5 pixel spacing. Higher pattern resolution or larger dots are
therefore impractical for this measurement given the current
hardware configuration. The most important improvement of this
measurement over the previous one is evident in the precision
numbers. Over the four square meters of membrane area imaged,
the professional system was precise to 59 mm versus 62 mm over
less than 0.5 m2 imaged previously, meaning that the overall
precision increased from 1:32,300 to 1:50,800.

The shaded surface shown in Fig. 10.6 clearly characterizes all
the medium-amplitude wrinkles, the seam, and the billow seen in
Fig. 10.4. This plot details the entire surface of the test article
instead of just a small area as in the previous application. The
wrinkles are clearly evident, but in addition it is possible to see
the true size of the billow compared to the wrinkles. The
measured wrinkles are on average 5 mm in amplitude, matching
the measurement in the previous section, while the billow is
almost ten times that size. Also apparent in Fig. 10.4 is the
tendency of the membrane to curl at the edges. The shape
characterization produced here is unique. A realistic solar sail
model has never before been achieved in a full-field, totally non-
contact manner to this resolution. This surface model is of
sufficient quality to be used for validation of analytical models
and for supporting development of hardware and software tools
for future measurements and use in space, achieving both of the
stated goals.

10.2. Dynamic analysis of 2-m Vellum solar sail

Structural dynamic characterization is also important for the
development and validation of analytical models supporting
future designs of gossamer structures in general and solar sails
in particular. In the dynamic analysis of these structures, as in the
static characterization, non-contact measurement is necessary to
avoid altering the responses of the objects being measured.
Videogrammetry expands the methods and techniques of
photogrammetry to multiple time steps yielding dynamic data.
While other non-contact dynamic measurement techniques exist,
they are not full-field. It was hoped that the dynamic data
generated would be useful in simply tracking the overall shape
of the membrane as a function of time. The accuracy of the
measurement of the resonant frequencies and operating deflec-
tion shapes that were extracted, however, surpassed all expecta-
tions [12].

Fig. 10.7 shows the two meter solar sail test article measured
in this application. The test article membranes are 100 mm thick
Vellum, a diffuse white material ideal for dot projection since it
scatters light almost equally in all directions regardless of the
angle of incidence. This property enables the Vellum to yield a
grid of uniform contrast from any camera angle. The test article is
not designed to approximate actual solar sail material as is the
test article used in the first three applications, but is designed as a
research tool for measurement method development. Fig. 10.8
shows the test setup used in the experiment. A grid of 49 dots was
created on the right quadrant of the four quadrant solar sail by a
digital projector and retro-reflective targets were attached to the
booms. A long-stroke electrodynamic shaker attached to the tip of
the lower right boom excited the structure with a pseudo-random
forcing function. A turn-key scanning laser vibrometer measured
the frequency response function of the sail quadrant and its



Fig. 10.8. Test setup for dynamic characterization.

Table 10.1
Identified resonant frequencies of the 2 m Vellum

solar sail.

Laser vibrometer (Hz) Videogrammetry

1.75 1.77 Hz (ODS)

2.65 2.49 Hz (FRF, ODS)

2.81 Hz (ODS)

3.34 3.28 Hz (FRF)

3.67 3.69 Hz (ODS, FRF)

4.74 4.75 Hz (ODS, FRF)

Fig. 10.9. First deflection shape comparison for Vellum solar sail test article,

(a) 1.75 Hz Laser Vibrometer, and (b) 1.77 Hz Videogrammetry (ODS).

Fig. 10.10. Second deflection shape comparison for Vellum solar sail test article,

(a) 2.65 Hz Laser Vibrometer, and (b) 2.49 Hz Videogrammetry (FRF).

Fig. 10.11. Third deflection shape comparison for Vellum solar sail test article,

(a) 3.34 Hz Laser Vibrometer, and (b) 3.28 Hz Videogrammetry (FRF).
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corresponding operating deflection shapes, and is used as a
standard against which to compare and determine the validity
of the videogrammetric results.

At high resolutions, the vibrometer measures thousands of FFT
lines at each point, 1600 in this application, to produce detailed
results. However this form of data acquisition by scanning each
point individually is slow at low frequencies, requiring several
hours to run one test. Videogrammetry is attractive because of its
ability to measure all of the points simultaneously. For the results
presented here, the cameras recorded data for approximately 10 s
gathering a total of only 384 frames each instead of several sets of
3200 samples (twice the number of FFT lines) taken by the
vibrometer at each point. While the videogrammetric results
shown below are arguably not as clean as the vibrometer data,
they are full-field, simultaneous measurements taken in just a
few seconds instead of hours.

The time-dependent videogrammetric data of the positions
was loaded into modal analysis software for interpretation where
two different computational methods were used. The first
involved overlaying the time histories of individual points and
calculating the Fourier transform of the joint history. The soft-
ware then animated the operating deflection shapes (ODS) at each
peak in the frequency domain. The second method of analysis
calculated frequency response functions (FRF). Here only one
degree of freedom was used, the out-of-plane displacement in
the Z direction, identical to that used by the vibrometer. For the
videogrammetry experiment the input signal was not measured,
so a non-node reference point on the membrane was specified
enabling the software to calculate the FRF’s and animate shapes
again at the peaks in the frequency domain. The combined results
of both of these methods of analysis are compared against the
results of the laser vibrometer measurements in Table 10.1. While
neither the ODS or FRF method is currently considered to be
entirely accurate, some combination of the two will likely capture
all dynamics below 5 Hz. Note that the non-linear nature of the
deflection shapes, their coupling, and the inability to compensate
for atmospheric damping mean that the shapes shown in
Figs. 10.9–10.13 are not actually mode shapes, and that the
frequencies listed in Table 10.1 are not actually modal frequen-
cies. These can alternatively be referred to as ‘‘structural reso-
nances’’ and ‘‘resonant frequencies [14,7].

Examination of Table 10.1 reveals good correlation between
the results found using laser vibrometry and videogrammetry.
While several inconsistencies are evident, overall the resonant
frequencies were measured to within 0.2 Hz of each other. The
deflection shapes are shown in Figs. 10.9–10.13.



Fig. 10.12. Fourth deflection shape comparison for Vellum solar sail test article,

(a) 3.67 Hz Laser Vibrometer, and (b) 3.69 Hz Videogrammetry (FRF).

Fig. 10.13. Fifth deflection shape comparison for Vellum solar sail test article,

(a) 4.74 Hz Laser Vibrometer, and (b) 4.75 Hz Videogrammetry (FRF).
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The first two shapes shown in Figs. 10.9 and 10.10 are basically
boom driven modes. The first deflection shape shows that the
booms are in phase, and the second shows the booms to be out of
phase with the membrane following in a first order fashion.
Fig. 10.11 shows the third deflection shape of the system, with
the booms in phase and the membrane in a second order
configuration. The fourth deflection shape (see Fig. 10.12) shows
the booms to be in phase with a large amplitude first order billow
of the membrane. Finally, the fifth deflection shape in Fig. 10.13
shows a saddle configuration for the membrane. In all of the
figures videogrammetry produced similar shapes at similar fre-
quencies as the vibrometer, demonstrating the potential of the
full-field non-contact dynamic characterization technique.

Videogrammetry can only measure frequencies up to approxi-
mately one half of the frame rate of the cameras without using
stroboscopic flashes. This limitation will not generally be a
hindrance for use on gossamer structures because the dominant
modes will occur below 5.0 Hz. Also, the displacement of the test
article must be large enough to be detected by the cameras,
whereas the vibrometer is much more sensitive. The above results
show videogrammetry to be capable of achieving full-field non-
contact dynamic measurements of solar sail structures.
11. Conclusions

Photogrammetric techniques are useful image-based tools in
aerospace application to measure the physical quantities relevant
to flight vehicles such wing deformation, model attitude/position,
surface shape and dynamics. The theoretical foundation is the
perspective projection transformation, i.e., the collinearity equa-
tions, that establishes the relationship between the image plane
and the 3D object space. Camera calibration/orientation is the key
procedure to determine the exterior and interior orientation
parameters in the collinearity equations. Due to limited optical
access in most aerospace facilities, single-view camera calibra-
tion/orientation is highly desirable, and therefore the optimiza-
tion method coupled with the direct linear transformation (DLT)
or a closed-form resection solution is developed for various
experiments at NASA. Aeroelastic wing and blade deformation
and model attitude measurements have been routinely conducted
in large wind tunnels at NASA and AEDC. In addition, special
measurements have been made on smart wing deformation, in-
flight wing deformation, aerodynamic load determination, and
dynamics of thin-plate-wing flutter. In fact, photogrammetry is
essential to all quantitative image-based flow diagnostic and
visualization techniques since it provides the relationship
between the image plane and the object space. Pressure and
temperature sensitive paints (PSP and TSP) and other surface
measurement techniques require mapping data from images onto
a 3D surface of an object. The perspective projection transforma-
tion is critical to reconstruct 3D displacement (or velocity) vectors
in stereoscopic and tomographic particle image velocimetry (PIV).
Photogrammetry is used in accurate determination of the aircraft
position and attitude for vision-based autonomous landing and
navigation. Such vision-based systems are applicable to small
general aviation aircraft as well as unmanned-air-vehicles (UAVs)
and micro-air-vehicles (MAVs). Photogrammetry is particularly
suitable for non-contact measurements of surface shapes and
dynamics of gossamer space structures like deployable ballutes
for aerobraking on Mars, telescope sunshields and membrane
space solar arrays. Commercial photogrammetric systems and
software have been used in ground-based laboratory tests. How-
ever, since most gossamer space structures rely on ultra-thin
membranes, high-density projected targets and laser-induced
fluorescence targets are preferred.
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Appendix A. Analytical techniques for camera calibration/
orientation

A1. Direct linear transformation (DLT)

Rearranging the terms in the collinearity Eq. (2.3) leads to the
DLT equations

L1XþL2YþL3ZþL4�ðxþdxÞðL9XþL10YþL11Zþ1Þ ¼ 0

L5XþL6YþL7ZþL8�ðyþdyÞðL9XþL10YþL11Zþ1Þ ¼ 0 ðA1Þ

The DLT parameters L1,yL11 are related to the camera exterior
and interior orientation parameters (o,f,k, Xc, Yc, Zc) and (c, xp, yp)
[77]. Unlike the standard collinearity equations, Eq. (A1) is linear
for the DLT parameters when the lens distortion terms dx and dy

are neglected. In fact, the DLT is a linear treatment of what
is essentially a non-linear problem at the cost of introducing
two additional parameters. The matrix form of the linear DLT
equations for M targets is B L¼C, where L¼(L1,yL11)T,
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C¼(x1,y1,yxM,yM)T, and B is the 2M�11 configuration matrix
that can be directly obtained from Eq. (A1). Without using an
initial guess, a least-squares solution for L is formally given by
L¼(BTB)�1BTC. The camera orientation parameters can be
extracted from the DLT parameters from the following expres-
sions

xp ¼ ðL1L9þL2L10þL3L11ÞL
2, yp ¼ ðL5L9þL6L10þL7L11ÞL

2,

c¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL2

1þL2
2þL2

3ÞL
2
�x2

p

q
, f¼ sin�1

ðL9LÞ,

o¼ tan�1ð�L10=L11Þ, k¼ cos�1ðm11=cosðfÞÞ,

m11 ¼ LðxpL9�L1Þ=c, L¼�ðL2
9þL2

10þL2
11Þ
�1=2,

Xc

Yc

Zc

0
B@
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CA¼�
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0
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1

0
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CA: ðA2Þ

A2. Closed-form resection solution

The closed-form resection solution given by Zeng and Wang [111]
based on three points is recapitulated in a more concise index
notation, which is useful for initial estimates of the exterior orienta-
tion parameters. When the principal point is at (xp,yp)¼(0,0), without
lens distortion, the collinearity equations for three targets can be re-

written as x1
i ¼�cX

1

i =X
3

i and x2
i ¼�cX

2

i =X
3

i (i¼1,2,3). The coordi-

nates Xi ¼ ðX
1

i ,X
2

i ,X
3

i Þ
T or X

j

i ¼mj�ðXi�XcÞ are the projections of the

object space position vector X�Xc in a local object space coordinate
frame (m1, m2, �m3) located at the optical center Xc. Here, the
coordinate system (m1, m2, �m3) is used such that it is consistent
with that used by Zeng and Wang [111]. The index ‘i’ denotes a
particular target. The corresponding image point of the target ‘i’ is

xi ¼ ðx
1
i ,x2

i Þ
T . The vectors m1¼(m11, m12, m13)T and m2¼(m21, m22,

m23)T are the directional cosine vectors parallel to the x1-axis, x2-axis
in the image plane, respectively. The vector m3¼(m31, m32, m33)T is
normal to the image plane, directing from the principal point to the
optical center along the optical axis. The distances between two of

three targets are
P3

j ¼ 1 ½X
j

1�X
j

2�
2 ¼ L2

3,
P3

j ¼ 1 ½X
j

2�X
j

3�
2 ¼ L2

1, andP3
j ¼ 1 ½X

j

3�X
j

1�
2 ¼ L2

2, where L1, L2 and L3 are the distances between

two targets that are known when the coordinates of the three targets

are given. Eliminating X
1

i and X
2

i in the above equations, we have
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3, ðA3Þ

A22ðX
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�2A23X
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1, ðA4Þ
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�2A31X
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2: ðA5Þ

The coefficients in Eqs. (A3)–(A5) are given by Aij¼ridrj/c
2,

where ri ¼ ðx
1
i ,x2

i ,cÞ is the position vector that points to the target
‘i’ on the image from the origin (optical center) of the frame
(m1, m2, �m3). Further, we know X

3

i ¼�m3�ðXi�XcÞ ¼�RicosYi,
where Ri¼9Xi�Xc9 is the distance between the target ‘‘i’’ and the
optical center and Yi is the angle between Xi�Xc and m3. Since
the vectors Xi�Xc and ri ¼ ðx

1
i ,x2

i ,cÞ are collinear in a perfect
perspective projection, we have cos2Yi ¼ c2=9ri9

2
¼ 1=Aii and

X
3

i ¼�Ri=
ffiffiffiffiffiffi
Aii

p
. Substituting these relations into Eqs. (A3)–(A5)

yields

R2
1�D1R1R2þR2

2 ¼ L2
3, ðA6Þ

R2
2�E1R2R3þR2

3 ¼ L2
1, ðA7Þ

R2
3�F1R3R1þR2

1 ¼ L2
2: ðA8Þ
The coefficients in Eqs. (A6)–(A8) are defined as D1¼D12,
E1¼D23 and F1¼D31, where Dij¼2Aij/(AiiAjj)

1/2. Since Li and Aij

are known, the distances Ri can be obtained by solving
Eqs. (A6)–(A8).

Combining Eqs. (A6)–(A8) and introducing R1/p¼1 and R3/p¼n

yield a fourth-order algebraic equation for n

N1n4þN2n3þN3n2þN4nþN5 ¼ 0, ðA9Þ

where

N1 ¼ ð1�K12Þ
2
þK2

32�2ð1�K12ÞK32�K32E2
1þ4K32ð1�K12Þ,

N2 ¼ K32F1ð�2�2K32þ4K12þE2
1ÞþK12ðE1D1þ2F1�2K12F1Þ

þE1D1ðK32�1Þ,

N3 ¼ K32ðK32F2
1�F1D1E1�4K12þ2K32�E2

1�2K12F2
1Þ

þK12ðK12F2
1þ2K12�F1E1D1�D2

1ÞþD2
1�2þE2

1,

N4 ¼ K32ð2F1�2K32F1þE1D1þ4K12F1ÞþK12ðE1D1�2K12F1

þF1D2
1�2F1Þ�D1E1,

N5 ¼ K32ðK32�2�2K12ÞþK12ðK12�D2
1þ2Þþ1:

Eq. (A9) has either two or four real roots for n since the
complex roots are always in conjugate pair. Typically, there are
two real roots in photogrammetric applications. Once n is known,
R1 and R3 can be given by R1¼L2(n2

�F1nþ1)�1/2 and R3¼nR1.
There are two solutions for R2 from Eq. (A6) R2 ¼ ðD1R17ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2
1R2

1�4ðR2
1�L2

3Þ

q
Þ=2, and two other solutions from Eq. (A7)

R2 ¼ ðE1R37
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2

1R2
3�4ðR2

3�L2
1Þ

q
Þ=2. If R2 is correct, the values of R2

given by these two equations should be consistent. Therefore, to
satisfy this condition, the number of sets of (R1,R2,R3) can be
reduced, and typically two sets of (R1,R2,R3) are selected.

For a given set of (R1, R2, R3), three equations for the camera
location Xc¼(Xc, Yc, Zc) are

ðX1�XcÞ
2
þðY1�YcÞ

2
þðZ1�ZcÞ

2
¼ R2

1, ðA10Þ

ðX2�XcÞ
2
þðY2�YcÞ

2
þðZ2�ZcÞ

2
¼ R2

2, ðA11Þ

ðX3�XcÞ
2
þðY3�YcÞ

2
þðZ3�ZcÞ

2
¼ R2

3: ðA12Þ

For convenience in writing the following expressions, the
notations Xc ¼ ðX

1
c , X2

c , X3
c Þ and Xi ¼ ðX

1
i , X2

i , X3
i Þ are replaced by

Xc¼(Xc, Yc , Zc) and Xi¼(Xi, Yi, Zi), respectively. The solution to this
problem is to find intersection of three spheres, and generally
there are two solutions. Eliminating the terms containing X2

c , Y2
c

and Z2
c , we have

DX21XcþDY21Yc ¼ C1, DX32XcþDY32Yc ¼ C2 ðA13Þ

where DX21¼X2�X1, DY21¼Y2�Y1, DX32¼X3�X2, DY32¼Y3�Y2,
C1¼g1�DZ21Zc, C2¼g2�DZ32Zc, DZ21¼Z2�Z1, DZ32¼Z3�Z2,

g1 ¼ ½R
2
1�R2

2þðX
2
2þY2

2þZ2
2Þ�ðX

2
1þY2

1þZ2
1Þ�=2,

g2 ¼ ½R
2
2�R2

3þðX
2
3þY2

3þZ2
3Þ�ðX

2
2þY2

2þZ2
2Þ�=2:

The solutions of Eq. (A13) for Xc and Yc are related linearly to
Zc, i.e.,

Xc ¼ hX1�hX2Zc , Yc ¼ hY1�hY2 Zc , ðA14Þ

where

hX1 ¼ ðg1DY32�g2DY21Þ=D, hX2 ¼ ðDZ21DY32�DZ32DY21Þ=D,

hY1 ¼ ðg2DX21�g1DX32Þ=D, hY2 ¼ ðDZ32DX21�DZ21DX32Þ=D,

D¼DX21DY32�DX32DY21:

Substitution of Eq. (A14) into Eq. (A10) yields a quadratic
algebraic equation

aZ2
c þbZcþc¼ 0, ðA15Þ
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where a¼ h2
X2þh2

Y2þ1,

b¼ 2X1hX2þ2Y1hY2�2Z1�2hX1hX2�2hY1hY2,

c¼�R2
1þðX

2
1þY2

1þZ2
1Þ�2X1hX1�2Y1hY1þh2

X1þh2
Y1:

Therefore, for a given set of (R1, R2, R3), we obtain two sets of
(Xc, Yc, Zc). In order to select the appropriate sets of (Xc,Yc,Zc), three
targets (1, 2, 3) are numbered in the counterclockwise fashion in
both the image plane and object space (viewed from a camera). In
this case, the vector (X2�X1)� (X3�X1) is generally in the same
direction of the vector Xc�X1. A criterion for the correct perspec-
tive relationship is (Xc�X1)d[(X2�X1)� (X3�X1)]40. After the
criterion is applied to four sets of (Xc, Yc, Zc) obtained from the two
sets of (R1,R2,R3), two candidate sets of (Xc, Yc, Zc) are typically
selected.

The three elements of the vector m3 can be directly obtained
by solving the linear system of equations m3�ðXi�XcÞ ¼�Ri=

ffiffiffiffiffiffi
Aii

p
(i¼1,2,3). Similarly, other two vectors m1 and m2 can be deter-
mined by solving m1�ðXi�XcÞ ¼ ðx1

i =cÞðRi=
ffiffiffiffiffiffi
Aii

p
Þ and m2�ðXi�XcÞ ¼

ðx2
i =cÞðRi=

ffiffiffiffiffiffi
Aii

p
Þ (i¼1,2,3). Therefore, the Euler rotational angles

(o,f,k) can be extracted using o¼ tan�1ð�m32=m33Þ, f¼ sin�1

ðm31Þ, and k¼ sin�1
ð�m21=cosfÞ. Finally, two sets of the exterior

orientation parameters (o,f,k, Xc, Yc, Zc) are obtained from three
known targets. At this stage, however, the unique solution cannot
be determined without additional information. When an extra
known target is added, two groups of three targets can be used to
obtain four sets of the exterior orientation parameters. The
correct exterior orientation parameters should remain invariant
for two different groups of three targets. Hence, if two sets of the
exterior orientation parameters are the same, they should be the
correct exterior orientation parameters. In general, this four-point
method is able to give a unique solution. The closed-form
resection solution, assuming that lens distortion is negligible,
the principal point coincides at the geometrical center of the
image plane and the principal distance is given, provides an initial
estimate of the exterior orientation parameters.

A3. Optimization method

Liu et al. [67] developed an optimization method to cope with
strong correlation between the interior and exterior orientation
parameters that leads to the singularity of the normal-equation-
matrix in least-squares estimation for a complete set of the
camera parameters. This method contains two separate but
interacting procedures: resection for the exterior orientation
parameters and optimization for the interior orientation and lens
distortion parameters.

A3.1. Resection for exterior orientation parameters

Resection for the exterior orientation parameters is first
carried out for a given set of the interior orientation parameters.
When the image coordinates (xn,yn) of the nth target are in pixels,
the collinearity equations are expressed as

f 1 ¼ Shxn�xp�dxþcU=W ¼ 0

f 2 ¼ Svyn�yp�dyþcV=W ¼ 0, ðA16Þ

where U¼m1d(Xn�Xc), V¼m2d(Xn�Xc), W¼m3d(Xn�Xc), and Sh

and Sv are the horizontal and vertical pixel spacings (mm/pixel)
of a CCD camera, respectively. In general, the vertical pixel
spacing is fixed and known for a CCD camera, but the effective
horizontal spacing may be variable depending on the frame
grabber used to digitize the image. Thus, an additional parameter,
the pixel-spacing-aspect-ratio Sh/Sv, is introduced. We define
Pex¼(o,f,k, Xc, Yc, Zc)

T for exterior orientation parameters and
Pin¼(c, xp, yp, K1, K2, P1, P2, Sh/Sv)T for the interior orientation and
lens distortion parameters. For given values of Pin, and sets of
pn¼(xn, yn)T and Pn¼(Xn, Yn, Zn)T, Pex in Eq. (A16) can be found by
an iterative least-squares solution, referred to in photogrammetry
as ‘‘resection’’.

The linearized collinearity equations for targets (n¼1, 2,y, M)
are written as V¼A(DPex )� l, where DPex is the correction term
for the exterior orientation parameters, V is the 2M�1 residual
vector, A is the 2M�6 configuration matrix, and l is the 2M�1
observation vector. The configuration matrix A and observation
vector l in the linearized collinearity equations are

A¼ ½ð@f 1=@PexÞ1ð@f 2=@PexÞ1 � � � ð@f 1=@PexÞM ð@f 2=@PexÞM�
T ,

l¼�½ðf 1Þ1ðf 2Þ1 � � � ðf 1ÞMðf 2ÞM�
T ,

where the operator @ /@ Pex is defined as (@ /@o, @ /@j, @ /@k, @ /@Xc,
@ /@Yc, @ /@Zc) and the subscript denotes the target. The compo-
nents of the vectors @ f1/@ Pex and @ f2/@ Pex are

@f 1

@o
¼

c

W
m12ðZ�ZcÞ�m13ðY�YcÞ�

U

W
m32ðZ�ZcÞ�m33ðY�YcÞ½ �

� �
,

@f 1

@f
¼

c

W
�cosk W�

U

W
ðcosk U�sink VÞ

� �
,
@f 1

@k ¼
cV

W
,

@f 1

@Xc
¼

c

W
�m11þ

U

W
m31

� �
,
@f 1

@Yc
¼

c

W
�m12þ

U

W
m32

� �
,

@f 1

@Zc
¼

c

W
�m13þ

U

W
m33

� �
,

@f 2

@o ¼
c

W
m22ðZ�ZcÞ�m23ðY�YcÞ�

V

W
m32ðZ�ZcÞ�m33ðY�YcÞ½ �

� �
,

@f 2

@f
¼

c

W
sink W�

V

W
ðcosk U�sink VÞ

� �
,
@f 2

@k
¼�

cU

W
,

@f 2

@Xc
¼

c

W
�m21þ

V

W
m31

� �
,
@f 2

@Yc
¼

c

W
�m22þ

V

W
m32

� �
,

@f 2

@Zc
¼

c

W
�m23þ

V

W
m33

� �
:

A least-squares solution to minimize the residuals V for the
correction term is DPex¼(ATA)�1ATl. In general, the 6�6 normal-
equation-matrix (ATA) can be inverted without singularity since the
interior orientation and lens distortion parameters are not included
in the least-squares estimation. To obtain such Pex that the
correction term becomes zero, the Newton-Raphson iterative
method is used for solving the non-linear equation (ATA)�1ATl¼0
for Pex. This approach converges over considerable ranges of the
initial values of Pex.

Therefore, for a given Pin, the corresponding exterior orienta-
tion parameter Pex can be obtained and are symbolically
expressed as

Pex ¼ RESECTIONðPinÞ: ðA17Þ

At this stage, the exterior orientation parameters Pex obtained
from Eq. (A17) are not necessarily correct unless the given interior
orientation and lens distortion parameters Pin are accurate.
Obviously, an extra condition is needed to obtain correct Pin

and the determination of Pin is coupled with the resection for
Pex. The following section describes an optimization problem to
obtain the correct Pin.

A3.2. Optimization for interior orientation parameters

In order to determine the correct values of Pin, an extra
condition must be given. We note that the correct values of Pin

are intrinsic constants of a camera/lens system, and they are
independent of the target locations pn¼(xn, yn)T and Pn¼

(Xn, Yn, Zn)T. Mathematically, Pin is an invariant under a transfor-
mation ðpn, PnÞ/ðpm, PmÞ (man). By rearranging the collinearity
equations with distortion terms, the interior orientation para-
meters can be expressed in the following form (c, xp, yp)T

¼G

(pn, Pn, Pin, Pex). Therefore, for correct values of Pin, the quantity
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G ( pn, Pn, Pin, Pex) is an invariant under the transformation
ðpn, PnÞ/ðpm, PmÞ (man). In other words, for correct values of
Pin, the standard deviation of G ( pn, Pn, Pin, Pex) calculated over
all targets should be zero, i.e., stdðGÞ ¼ ½

PM
n ¼ 1 ðG�/GSÞ2=

ðM�1Þ�1=2 ¼ 0, where std denotes the standard deviation and
/GS denotes the mean value. Furthermore, since std(G)Z0 is
always valid, the correct Pin must correspond to the global
minimum point of the function std(G). Hence, the determination
of correct Pin becomes an optimization problem to seek values of
Pin that minimize the objective function std(G), i.e., stdðGÞ-min.
To solve this multiple-dimensional optimization problem, the
sequential golden section search technique is used because of
its robustness and simplicity [86]. Since the quantity G ( pn, Pn,
Pin, Pex) is related to Pex, the optimization for Pin is coupled
with the resection for Pex. Other appropriate objective functions
may also be used. An obvious choice is the root-mean-square
(rms) of the residuals of calculated object space coordinates of all
targets. In fact, we find that the use of std(xp) or std(yp) in
optimization is qualitatively equivalent to the use of the rms of
the residuals.

In principle, any component of std(G)¼[std(c),std(xp),std(yp)]T

can be used as an objective function since minimizing one of
three components simultaneously leads to minimization of other
components. As will be shown, std(xp) and std(yp) have a simpler
topological structure near the global minimum point than std(c).
Hence, std(xp) and std(yp) are more appropriate objective func-
tions for optimization. For a simulated 3D field of targets on a step
configuration, a typical topological structure of std(xp) is shown in
Fig. 3.2 near the global minimum point (c,xp,yp)¼(28,0.2,
0.08) mm for simulated image of the target field. The function
std(yp) has a similar topological structure in the parametric space.
The topological structure of std(xp) or std(yp) depends on three-
dimensionality of the target field, as shown in Fig. 3.3. The
topological structure of std(xp) or std(yp) can also be affected by
random disturbances on the targets, as shown in Fig. 3.5.

The optimization method still requires appropriate initial
values to obtain a converged solution even though its conver-
gence ranges of the initial values are quite large. The DLT and
closed-form resection method can provide initial approximate
values of the exterior orientation parameters (o,f,k,Xc,Yc,Zc) and
the principal distance c, where the domain of (o,f,k) is defined as
�1800ror1800, �900rfr900 and �1800rkr1800. Using
the initial approximations given by the DLT or closed-form
resection method, the optimization method gives more accurate
estimates of the camera orientation and lens distortion para-
meters. The standard optimization technique such as the golden
section search method can be used to minimize the objective
function std(xp) in the parametric space (c, xp, yp, K1, K2, P1, P2,
Sh/Sv). Combined with the DLT, the optimization method allows a
rapid and comprehensive automatic camera calibration to obtain
14 camera parameters from a single image without requiring a
guess of the initial values. Note, however, that the optimization
method may not work well for lenses with very large amounts of
distortion (especially fisheye lenses).
Appendix B. Point correspondence and intersection

To determine three unknown coordinates from multiple views
without any a priori constraint, the correspondence between two
or more images is required for the same physical point in the
object space. This is the point correspondence problem in 3D
vision. Experimental fluid dynamicists encounter this problem in
particle-tracking velocimetry. Longuet-Higgins [74] gave a rela-
tion between the corresponding points in two images. Consider
two cameras in which the unit vectors (m1(n),m2(n),m3(n))
constitute a local right-hand coordinate system whose origin is
located at the perspective center Xc(n), where the index n¼1, 2
denotes the cameras 1 and 2. The coordinates XðnÞ ¼ ðX

1

ðnÞ, X
2

ðnÞ,
X

3

ðnÞÞ
T in the coordinate frames (m1(n), m2(n), m3(n)) are related by

the translation and rotation transformation X
a
ð2Þ ¼ RabðX

b
ð1Þ�Tb

r Þ,
where R¼[Rab] and Tr ¼ ½T

b
r � are the rotation matrix and transla-

tion vector, respectively. A new matrix Q is given by Q¼R S or
Sab¼Ram Smb, where S is the skew-symmetric matrix Smb ¼ embsTs

r

and the permutation index embs¼1,or �1, or 0 if (m,b,s) is an
even, or odd permutation of (1, 2, 3), or otherwise. Thus, we know

X
a
ð2ÞQabX

b
ð1Þ ¼ RakðX

k
ð1Þ�Tk

r ÞRamembsTs
r X

b
ð1Þ ¼ ðX

m
ð1Þ�Tm

r ÞembsTs
r X

b
ð1Þ ¼ 0,

ðB1Þ

since the rotational matrix R is orthogonal (Ram Rmb¼dab) and embs
is anti-symmetric in every pair of its subscripts. When the
image coordinates xaðnÞ are relative to the principal point, the
collinearity equations without lens distortion can be written as a
simpler form xaðnÞ ¼ �cX

a
ðnÞ=X

3

ðnÞ, (n¼1, 2,a¼1, 2, 3). Dividing
Eq. (B1) by X

3

ð1ÞX
3

ð2Þ=c2 yields the Longuet-Higgins equation for
the point correspondence

xað2ÞQabxb
ð1Þ ¼ 0, ðB2Þ

where Q is the fundamental matrix related to the camera exterior
orientation parameters. Given a sufficient number of point corre-
spondences between two images, the elements Qab can be
determined by solving the algebraic equations ðxa

ð2Þx
b
ð1ÞÞiQab ¼ 0

(iZ8) using least-squares method.
The geometrical meaning of Eq. (B2) is related to the epipolar

lines in the image plane [81,41]. For a given point ðx1
ð1Þ,x

2
ð1ÞÞ in the

image 1, its epipolar line in the image 2 is projection of a line
connecting the object space point and the image point through
the optical center of the camera 1 onto the image 2. This epipolar
line in the image 2 is given by xa

ð2Þpað1Þ ¼ 0, where pað1Þ ¼Qabxb
ð1Þ is

the coefficients of the epipolar line. Thus, the fundamental matrix
Q maps a point in the image 1 to its epipolar line in the image
2 and vice versa. Hence, Eq. (B2) serves as the epipolar constraint
to reduce the number of unknowns for establishing the point
correspondence between images. When lens distortion exists, the
epipolar constraint is ðxa

ð2Þ þdxa
ð2ÞÞQabðx

b
ð1Þ þdxb

ð1ÞÞ ¼ 0, where the
lens distortion terms are ½dxaðnÞ� ¼ ðdx1

ðnÞ, dx2
ðnÞ,0Þ

T . Since the lens
distortion terms are non-linear, an epipolar line is a curve rather
than a straight line.

For two calibrated cameras, the correspondence between two
images can be directly established from the collinearity equa-
tions. The collinearity equations for cameras 1 and 2 are written
as [69]

W1ðnÞ�ðX�XcðnÞÞ ¼ 0, W2ðnÞ�ðX�XcðnÞÞ ¼ 0: ðn¼ 1, 2Þ ðB3Þ

The vectors W1 and W2 are defined as W1 ¼

ðx1�x1
pþdx1Þm3þcm1 and W2 ¼ ðx

2�x2
pþdx2Þm3þcm2. The dif-

ferent notations of the image and object-space coordinates are
used here for more concise tensor expression. The image and
object-space coordinates x¼(x1,x2)T and X¼( X1, X2, X3 )T corre-
spond to (x, y) and ( X, Y, Z ) used in the most of this paper,
respectively. The vectors m1¼(m11, m12, m13)T and m2¼(m21,
m22,m23)T are the directional cosine vectors parallel to the x1-
axis, x2-axis in the image plane, respectively. The vector
m3¼(m31, m32,m33)T is normal to the image plane, directing from
the principal point to the optical center along the optical axis. The
vector W1 is on the plane spanned by the orthogonal unit vectors
m1 and m3, while W2 is on a plane spanned by m2 and m3.
Geometrically, Eq. (B3) describes two planes normal to W1 and
W2, defining an intersection line of the two planes through the
optical center Xc.
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Re-combination of Eq. (B3) yields two systems of linear
equations for X

W1comX ¼ B1com and W2 comX ¼ B2com ðB4Þ

where the composite matrices and vectors are

W1com ¼

WT
1ð1Þ

WT
2ð1Þ

WT
1ð2Þ

0
BBB@

1
CCCA, W2 com ¼

WT
1ð1Þ

WT
2ð1Þ

WT
2ð2Þ

0
BBB@

1
CCCA,

B1com ¼

WT
1ð1ÞXcð1Þ

WT
2ð1ÞXcð1Þ

WT
1ð2ÞXcð2Þ

0
BBB@

1
CCCA, B2com ¼

WT
1ð1ÞXcð1Þ

WT
2ð1ÞXcð1Þ

WT
2ð2ÞXcð2Þ

0
BBB@

1
CCCA: ðB5Þ

For two calibrated cameras, eliminating X from Eq. (B4), we
obtain a relation between the image coordinates ðx1

ð1Þ, x2
ð1ÞÞ and

ðx1
ð2Þ, x2

ð2ÞÞ,

Gðx1
ð1Þ, x2

ð1Þ; x1
ð2Þ, x2

ð2ÞÞ ¼W1comW�1
2 comB2com�B1com ¼ 0: ðB6Þ

For a point ðx1
ð1Þ,x

2
ð1ÞÞ in the image 1, its epipolar line in the

image 2 is given by :Gðx1
ð1Þ,x

2
ð1Þ; x

1
ð2Þ,x

2
ð2ÞÞ:-min. In general, the

epipolar line given by this minimization method is not a straight
line due to lens distortion. This minimization method takes a
longer computational time to obtain an epipolar line. Although it
is not a problem for simulations, it is not suitable to implementa-
tion of this algorithm to a real vision system. Thus, as an
alternative, we use this minimization method to determine the

coefficients Qab in the Longuet-Higgins equation xa
ð2ÞQabxb

ð1Þ ¼ 0 for

the point correspondence. As long as Qab are known, an epipolar
line can be instantly obtained using the Longuet-Higgins equation
for a given image point.

The Longuet-Higgins equation indicates that a point in the
image 1 corresponds to its epipolar line on the image 2 and vice
versa. Therefore, the point correspondence is not uniquely estab-
lished between a pair of images since for a given image point
ðx1
ð1Þ, x2

ð1ÞÞ, there is only one equation for two unknowns ðx1
ð2Þ, x2

ð2ÞÞ.
In order to establish the point correspondence between images, at
least four cameras (or four images) are needed. For four cameras
or images, the Longuet-Higgins equations are xahðiÞ Qabði,jÞ xbhðjÞ ¼ 0
(i¼1, 2,3,4,j¼1, 2,3,4) where the subscript (i, j) denotes a pair of
images. There are six pairs of images (i, j)¼(1,2), (1,3), (1,4), (2,3),
(2,4) and (3,4). Hence, for given Qab(i,j) and ðx1

ð1Þ, x2
ð1ÞÞ, we have a

system of six quadratic equations for six unknowns ðx1
ð2Þ, x2

ð2Þ,
x1
ð3Þ, x2

ð3Þ,x
1
ð4Þ, x2

ð4Þ,Þ. The solution can be found using an iterative
method.
Appendix C. Vibration of thin rectangular plate

The differential equation for the displacement w of a vibrating
plate is generally expressed by

L wðP,tÞ½ �þ
@

@t
C wðP,tÞ½ �þMðPÞ

@2wðP,tÞ

@t2
¼ FðP,tÞ, ðC1Þ

where P denotes the coordinates x and y, L is a linear differential
operator, C is a linear homogenous differential operator for
damping, M is also a linear operator, and F(P,t) is an external
distributed force on the plate. For a homogenous plate, the
operator L is the stiffness distribution L¼DEr

4, where DE¼Eh2/
12(1�n2) is the plate flexural rigidity, and M(P) is the mass
distribution. Consider a rectangular thin plate clamped at one
end. The plate length from the clamped end to the free end is b

and the plate width is a. The y-coordinate directs from the
clamped end to the free end along the edge. The x-coordinate
directs from the one corner to another corner along the clamped
edge.

The displacement w of a vibrating plate is given by an
expansion based on the eigenfunctions wr(x,y) [79]

wðx,y,tÞ ¼
X1
r ¼ 1

wrðx,yÞZrðtÞ, ðC2Þ

where Zr(t) are the time-dependent amplitudes. The eigenfunc-
tions are given by

wrðx,yÞ ¼ XmðxÞYnðyÞ, ðC3Þ

where Xm(x) and Yn(y) are the characteristic beam functions
[90,107]. For the edge y¼0 clamped and the other edge y¼b free,
the characteristic beam function Yn(y) is YnðyÞ ¼ cosgny�cosh
gnyþknðsingny�sinhgnyÞ (n¼1,2,3,y), where y¼ y=b is the nor-
malized coordinate and kn ¼ ðsingn�sinhgnÞ=ðcosgnþcoshgnÞ. The
values of gn are given by solving the nonlinear equation
cosgn coshgnþ1¼ 0. The first three values of gn are g1¼1.875,
g2¼4.694 and g3¼7.8547. For the edges x¼0 and x¼a free, the
characteristic beam functions Xm(x) are Xm(x)¼1 (m¼0),
XmðxÞ ¼ 1�2x (m¼1),

XmðxÞ ¼ cosmmðx�1=2Þþbmcoshmmðx�1=2Þ ðm¼ 2,4,6,. . .Þ

XmðxÞ ¼ sinlmðx�1=2Þþamsinhlmðx�1=2Þ ðm¼ 3,5,7,. . .Þ

where x¼ x=a is the normalized coordinate, bm ¼�sinðmm=2Þ=
sinhðmm=2Þ, and am ¼ sinðlm=2Þ=sinhðlm=2Þ. The parameters mm

and lm are given by solving the equations tanðmm=2Þþ
tanhðmm=2Þ ¼ 0 and tanðlm=2Þ�tanhðlm=2Þ ¼ 0. The typical values
of mm and lm are m2¼4.73, m4¼10.99, l3¼7.853, and l5¼14.137.
The first nine eigenfunctions are then defined as follows

w1ðx,yÞ ¼ X0ðxÞY1ðyÞ, w2ðx,yÞ ¼ X0ðxÞY2ðyÞ, w3ðx,yÞ ¼ X0ðxÞY3ðyÞ,

w4ðx,yÞ ¼ X1ðxÞY1ðyÞ, w5ðx,yÞ ¼ X1ðxÞY2ðyÞ, w6ðx,yÞ ¼ X1ðxÞY3ðyÞ,

w7ðx,yÞ ¼ X2ðxÞY1ðyÞ, w8ðx,yÞ ¼ X2ðxÞY2ðyÞ, w9ðx,yÞ ¼ X2ðxÞY3ðyÞ

ðC4Þ

These nine eigenfunctions or mode shapes are illustrated in
Fig. 7.20. Usually, the dominant modes are the first and second
bending modes [w1(x,y) and w2(x,y)] and the first torsion mode
[w4(x, y)].

Since the eigenfunctions are orthogonal, substituting Eq. (C2)
into the differential equation, Eq. (C1), for the displacement w of a
vibrating plate yields a system of the ordinary differential
equations for Zr(t)

€ZrðtÞþ
X1
s ¼ 1

crs _ZsðtÞþo
2
r ZrðtÞ ¼NrðtÞ, ðr¼ 1, 2,. . .Þ ðC5Þ

where the damping coefficients are

crs ¼

Z
D

wrðx,yÞC½ws�dxdy, ðr,s¼ 1, 2,. . .Þ ðC6Þ

and the generalized force is

NrðtÞ ¼

Z
D

wrðx,yÞFðx,y,tÞdxdy: r¼ 1, 2,. . . ðC7Þ

Note that appropriate dimensional constants are absorbed into
Eqs. (C6) and (C7) to make Eq. (C5) dimensionally consistent. It is
possible to recover the external force F(x, y, t) from the general-
ized force Nr(t) that can be considered, according to its definition,
as a projected component of F(x,y,t) on the eigenfunction wr(x, y).
Since wr(x,y) (r¼1,2,y) constitutes an orthonormal system,
according to the Riesz–Fischer theorem [61] the force F(x,y,t) at
a given time can be expressed as

Fðx,y,tÞ ¼Mðx,yÞ
X1
r ¼ 1

wrðx,yÞNrðtÞ: ðC8Þ
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Clearly, the fidelity of reconstruction of external force distri-
bution depends on how many modes can be recovered from
measurements.
Appendix D. Determination of aircraft attitude and position

D1. Two-camera method based on three points

The ground, aircraft and image coordinate systems are illu-
strated in Fig. 9.4. In the right-handed aircraft coordinate system
( Xac, Yac, Zac ), the Xac axis directs from the head to the tail along
the fuselage, the Yac axis directs along the right wing and the Zac

axis points upward. The ground coordinate system ( Xg, Yg, Zg ) is
located at the end of a runway. The position and orientation of the
image coordinate system is fixed relative to the aircraft coordi-
nate system when an aircraft is rigid. The relationship between
the image and aircraft coordinate system is determined by
camera calibration/orientation on the ground.

To recover the position and attitude of an aircraft relative
to the ground coordinate system, as shown in Fig. 9.4(a), two
points P1 and P2 on the right edge of a runway and third point P3

on the left edge (viewed from the aircraft) are selected.
The coordinates of the points P1, P2 and P3 in the aircraft
coordinate system ( Xac, Yac, Zac ) are determined by photogram-
metric intersection in a calibrated two-camera vision system
mounted on an aircraft. Thus, the triangle P1P2P3 defines three
unit orthogonal vectors on the ground expressed in the aircraft
coordinate system

e1g ¼ P1P2
		!

=9P1P2
		!

9¼
X3

i ¼ 1

r1ieiac

e2g ¼ e3g � P1P2
		!

=9e3g � P1P2
		!

9¼
X3

i ¼ 1

r2ieiac

e3g ¼ P1P3
		!

� P1P2
		!

=9P1P3
		!

� P1P2
		!

9¼
X3

i ¼ 1

r3ieiac, ðD1Þ

where eiac (i¼1,2,3) are the unit orthogonal vectors along the axes
of the aircraft coordinate system. The vectors eig (i¼1,2,3) con-
stitute a local coordinate system on the ground. It is assumed that
this local system is just a translated ground coordinate system
( Xg, Yg, Zg ) [see Fig. 9.4(a)]. Therefore, Eq. (D1) actually gives a
relationship between the ground coordinate system and the
aircraft coordinate system. The projection coefficients of the three
ground coordinates onto the one aircraft coordinate (e1ac) are
r11¼e1acde1g, r21¼e1acde2g and r31¼e1acde3g. Other projection
coefficients are similarly defined.

Without loss of generality, the transformation between the
ground coordinate system ( Xg,Yg,Zg ) and the aircraft coordinate
system ( Xac,Yac,Zac ) are given by

Xac

Yac

Zac

0
B@

1
CA¼

r11 r21 r31

r12 r22 r32

r13 r23 r33

0
B@

1
CA

Xg�XgOac

Yg�YgOac

Zg�ZgOac

0
B@

1
CA	 RðfÞRðyÞRðcÞ

Xg�XgOac

Yg�YgOac

Zg�ZgOac

0
B@

1
CA:
ðD2Þ

In Eq. (D2), the sequential rotational transformations between
the two systems are defined, where the rotation matrices are

RðfÞ ¼

1 0 0

0 cosf sinf
0 �sinf cosf

0
B@

1
CA, RðyÞ ¼

cosy 0 �siny
0 1 0

siny 1 cosy

0
B@

1
CA,

RðcÞ ¼
cosc sinc 0

�sinc cosc 0

0 0 1

0
B@

1
CA, ðD3Þ
and ðXgOac
, YgOac

, ZgOac
Þ are the position coordinates of the aircraft

in the ground coordinate system. The elements rij in Eq. (D2) are

r11 ¼ cosy cosc, r12 ¼ sinf siny cosc�cosf sinc
r13 ¼ cosf siny coscþsinf sinc, r21 ¼ cosy sinc
r22 ¼ sinf siny sincþcosf cosc,

r23 ¼ cosf siny sinc�sinf cosc,

r31 ¼�siny, r32 ¼ sinf cosy, r33 ¼ cosf cosy: ðD4Þ

The inverse transformation of Eq. (D2) is

Xg�XgOac

Yg�YgOac

Zg�ZgOac

0
B@

1
CA¼ R�1

ðcÞR�1
ðyÞR�1

ðfÞ
Xac

Yac

Zac

0
B@

1
CA: ðD5Þ

According to the typical notation in flight dynamics, the Euler
angles f, y, and c are the roll, pitch and yaw angles of an aircraft
relative to the ground coordinate system. In an approximate
sense, the rotation R�1(f) is around the Xac axis and the positive
roll angle f means the clockwise rotation. The rotation R�1(y) is
around the Yac axis and the positive pitch angle y means the
counterclockwise (nose-up) rotation. The rotation R�1(c) is
around the Zac axis and the positive yaw angle c means the
clockwise rotation. Fig. 9.4(c) illustrates the roll, pitch and yaw
rotations of an aircraft defined by R�1(f), R�1(y) and R�1(c).

Since the elements (projection coefficients) rij can be obtained
directly from the vectors defined by the triangle P1P2P3 in
Eq. (D1), the Euler angles f, y, and c can be extracted from
tanf¼ r32=r33, siny¼�r31 and tanc¼ r21=r11. Therefore, the
aircraft attitude is determined. The position Oac of the aircraft relative
to the point P1 in the ground coordinate system is given by

XgOac
�XgP1

¼ P1Oac
			!

�e1g , YgOac
�YgP1

¼ P1Oac
			!

�e2g , ZgOac
�ZgP1

¼ P1Oac
			!

�e3g , ðD6Þ

where ðXgP1
,YgP1

,ZgP1
Þ are the coordinates of the point P1 in the

ground coordinate system and P1Oac
			!

¼�ðXacP1
,YacP1

,ZacP1
Þ
T is the

vector from the point P1 to the point Oac in the aircraft coordinate
system. When the runway is flat and the runway width is given,
from Eq. (D6), we can know the aircraft latitude and the
lateral position of the aircraft relative to the runway centerline.
However, Eq. (D6) only gives the relative aircraft position along the
runway (in the Xg direction). In general, the two-camera
(or multiple-camera) approach gives the position and attitude of a
landing flight vehicle (aircraft or spacecraft) in the ground coordinate
system defined by three selected points.

D2. Single-camera method based on runway edges and horizon

A single-camera method was suggested by Sasa et al. [98] to
determine the aircraft position and attitude based on the runway
edges and horizon. Here the problem is reformulated. Consider a
special case where the aircraft coordinates Yac and Zac are aligned
with the image coordinates x and y, respectively. Thus, when the
lens distortion is corrected, we have the special form of the
collinearity equations relating the ground and image coordinate
systems

�
x

c
¼

Yac

Xac
¼

r12ðXg�XgOac
Þþr22ðYg�YgOac

Þþr32ðZg�ZgOac
Þ

r11ðXg�XgOac
Þþr21ðYg�YgOac

Þþr31ðZg�ZgOac
Þ

�
y

c
¼

Zac

Xac
¼

r13ðXg�XgOac
Þþr23ðYg�YgOac

Þþr33ðZg�ZgOac
Þ

r11ðXg�XgOac
Þþr21ðYg�YgOac

Þþr31ðZg�ZgOac
Þ
: ðD7Þ

The problem is to determine the aircraft position
ðXgOac

, YgOac
, ZgOac

Þ and three attitude angles f, y, and c.
At the vanishing point, when XgOac

-�1, Eq. (D7) becomes
�xvp ¼ r12=r11 and �yvp ¼ r13=r11, where xvp ¼ xvp=c and
yvp ¼ yvp=c are the normalized image coordinates of the vanishing
point that can be determined as an intersection between the
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runway edges in the image plane. These are two equations for the
three unknowns f, y, and c. Consider a straight line Yg¼g0Xgþg1

on the flat ground Zg¼0. When XgOac
-�1, Eq. (D7) becomes

�x¼ ðr12þr22g0Þðr11þr21g0Þ
�1 and �y¼ ðr13þr23g0Þ ðr11þr21

g0Þ
�1, where x¼ x=c and y¼ y=c are the normalized image

coordinates. Eliminating the constant g0, we have a horizon
in the image plane y¼ kohxþk1h, where koh¼(r21 r13�r11 r23)(r12

r21�r22 r11)�1 and k1h¼(r22 r13�r12 r23)(r12 r21�r22 r11)�1. Further
arrangement leads to koh ¼�tanf, and therefore the roll angle f
can be directly determined given the slope of the horizon koh.
Then the pitching and yaw angles y and c can be obtained
by solving the non-linear equations �xvp ¼ r12= r11 and �yvp ¼

r13=r11, given the vanishing point (xvp, yvp). Note that these
equations are very weakly related to the roll angle f and hence
it does not contain information on f. This is why the horizon is
required for this method. If the horizon cannot be clearly
identified in images, a distinct line perpendicular to the runway
at the end of the runway is required. For this line, y¼ kohxþk1h is
approximately valid as long as the relative distance of an aircraft
to the horizontal line is sufficiently large (9ZgOac

=XgOac
9oo1). The

effect of 9ZgOac
=XgOac

9 on estimation of the aircraft position and
attitude will be evaluated.

Now, we consider the runway edges in the image plane. In the
ground coordinates system, the right and left edges of a runway
are given by Yg¼7w/2 and Zg¼0, respectively, where w is the
width of the runway. From Eq. (D7), the right and left edges in the
image plane are, respectively, given by

y¼ koð7 Þxþk1ð7 Þ: ðD8Þ

The coefficients ko(7) and k1(7) are ko(7)¼(a2(7) r11�b1(7) r13)
(a1(7) r11�b1(7) r12)�1 and k1(7)¼�(a1(7) r13�a2(7) r12)(a1(7)

r11�b1(7) r12)�1, where a1ð7 Þ ¼ r22ð71�YgOac
Þ�r32ZgOac

, b1ð7 Þ ¼

r21ð71�YgOac
Þ�r31ZgOac

, a2ð7 Þ ¼ r23ð71�YgOac
Þ�r33ZgOac

, and
YgOac

¼ YgOac
=ðw=2Þ and ZgOac

¼ ZgOac
=ðw=2Þ are the normalized

coordinates. Rearrangement of the above relations yields

ZgOac
=ð71�YgOac

Þ ¼ Rð7 Þ, ðD9Þ

where

Rð7 Þ ¼
k0ð7 Þðr22þr21 xvpÞ�ðr23þr21 yvpÞ

k0ð7 Þðr32þr31 xvpÞ�ðr33þr31 yvpÞ

¼
k1ð7 Þðr22þr21 xvpÞ�ðr22yvp�r23 xvpÞ

k1ð7 Þðr32þr31 xvpÞ�ðr32yvp�r33 xvpÞ
: ðD10Þ

From Eq. (D9), the normalized position coordinates are

YgOac
¼

Rðþ ÞþRð�Þ
Rðþ Þ�Rð�Þ

, ZgOac
¼�

2Rðþ ÞRð�Þ
Rðþ Þ�Rð�Þ

: ðD11Þ

As long as the three attitude angles and YgOac
and ZgOac

are
known, the coordinate longitudinal XgOac

relative to a reference
point on a runway edge can be obtained from Eq. (D7). Essentially,
this method is a special camera orientation (resection) method
based on the three lines (the two runway edges and the horizon),
which is similar to the closed-form resection solution based on
three known targets.
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[95] Rüther H. An overview of software in non-topographic photogrammetry. In:
Karara HM, editor. Non-Topographic Photogrammetry. 2nd Edition. Falls
Church, VA: American Society for Photogrammetry and Remote Sensing;
1989. p. 129–45 Chapter 10.

[96] Ryall TG, Fraser CS. Determination of structural modes of vibration using
digital photogrammetry. Journal of Aircraft 2002;39(1):114–9.

[97] Salvi J, Armanhue X, Batlle J. A comparative review of camera calibrating
methods with accuracy evaluation. Pattern Recognition 2002;35:1617–35.

[98] Sasa, S, Gomi, H, Ninomiya, T, Inagaki, T, and Hamada, Y. Position and
attitude estimation using image processing of runway, AIAA Paper 2000-
0301, Reno, NV, Jan. 2000.

[99] Schairer ET, Hand L. Measurements of unsteady aeroelastic model deforma-
tion by stereo photogrammetry. Journal of Aircraft 1999;36(6):1033–40.

[100] Schairer, ET and Heincek, JT. Photogrammetric recession measurements of
ablative materials during arcjet testing, AIAA Paper 2007-1158, Reno, Jan. 2007.



T. Liu et al. / Progress in Aerospace Sciences 54 (2012) 1–5858
[101] Shih Tian-Yuan. On the duality of relative orientation. Photogrammetric
Engineering and Remote Sensing 1990;56(9):1281–3.

[102] Shortis MR, Beyer HA. Sensor technology for digital photogrammetry and
machine vision. In: Atkinson KB, editor. Close Range Photogrammetry and
Machine Vision. Scotland, UK: Whittles Publishing; 2001. p. 106–55.

[103] Spain, CV, Heeg, J, Ivanco, TG, Barrows, D, Florance, JR, Burner, AW, et al.
Assessing videogrammetry for static aeroelastic testing of a wind-tunnel
model, AIAA Paper 2004-1677, Palm Springs, CA, April 2004.

[104] Tian X, Iriarte-Diaz J, Middleton K, Galvao R, Israeli E, Roemer A, et al. Direct
measurements of the kinematics and dynamics of bat flight. Bioinspiration
& Biomimetics 2006;1:S10–8.

[105] Trisiripisal, P, Parks, MR, Abbott, AL Liu, T and Fleming, GA. Stereo analysis
for vision-based guidance and control of aircraft landing, AIAA Paper 2006-
1438, Reno, January, 2006.
[106] Tsai RY. A versatile camera calibration technique for high-accuracy 3D
machine vision metrology using off-the-shelf TV cameras and lenses. IEEE
Journal of Robotics and Automation 1987;RA-3(4):323–44.

[107] Warburton GB. The vibration of rectangular plates. Proceedings of the
Institution of Mechanical Engineers 1954;168(12):371–83.

[108] West JL, Derbes B. Solar sail vehicle system design for the GEOstorm
warning mission. AIAA 2000-5326; 2000.

[109] Wolf P. Elements of Photogrammetry. New York: McGraw-Hill; 1983.
[110] Wong KW. Basic mathematics of photogrammetry. In: Slama CC, editor.

Manual of Photogrammetry. 4th edn. Falls Church, Virginia: American
Society of Photogrammetry; 1980. p. 37–101 Chapter 2.

[111] Zeng Z, Wang X. A general solution of a closed-form space resection.
Photogrammetric Engineering and Remote Sensing 1992;58(3):327–38.


	Photogrammetric techniques for aerospace applications
	Introduction
	Perspective projection transformation and camera modeling
	Collinearity equations
	Alternative forms of collinearity equations
	Notes on collinearity equations
	Misaligned image plane
	Reference symmetry point
	Lens-image misalignment relationship


	Camera calibration/orientation and intersection
	Initial estimation
	Optimization method
	Laboratory calibration
	Bundle method
	Photogrammetric intersection

	Typical photogrammetric systems
	Cameras
	Still cameras
	Video cameras

	Targets and lighting
	Targets on wind tunnel models
	Target generation for gossamer structures

	Software
	Model deformation measurement
	Measurements of gossamer structures


	Deformation measurements in wind tunnels
	National Transonic Facility
	Transonic Dynamics Tunnel
	Unitary Plan Wind Tunnel
	Rotor blades in Ames 40-by-80-ft Wind Tunnel
	Other measurements

	Measurement uncertainty
	Sensitivity analysis
	Target centroiding uncertainty
	Reference polar analysis
	Single-camera vs. two-camera

	Special measurements in ground facilities and flight
	Smart Wing deformation at Langley TDT
	In-flight aeroelastic deformation
	Determining load from beam deformation
	Dynamic aeroelastic deformation
	Aircraft and spacecraft impact testing

	Quantitative flow diagnostics
	Relationship between image plane and surface
	Point correspondence
	Velocity correspondence

	Pressure and temperature sensitive paints
	Oil-film interferometry

	Vision-vased autonomous landing of aircraft
	Two-camera method
	Single-camera method

	Measurements for gossamer space structures
	Static measurements of 2-m Kapton solar sail
	Low density field
	High density field

	Dynamic analysis of 2-m Vellum solar sail

	Conclusions
	Acknowledgments:
	Analytical techniques for camera calibration/orientation
	Direct linear transformation (DLT)
	Closed-form resection solution
	Optimization method
	Resection for exterior orientation parameters
	Optimization for interior orientation parameters


	Point correspondence and intersection
	Vibration of thin rectangular plate
	Determination of aircraft attitude and position
	Two-camera method based on three points
	Single-camera method based on runway edges and horizon

	References




